• 回答数

    2

  • 浏览数

    85

喊我11就很好
首页 > 学术期刊 > 一维量子液体研究进展论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

原谅未来的未来

已采纳

自20世纪20年代量子理论出现以来,固体晶态的物理研究得到高度发展,进而演变为现在的凝聚态物理。接下来我为你推荐什么是凝聚态物理,一起看看吧!

什么是凝聚态物理

凝聚态物理学(condensed matter physics)是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。

凝聚态物理的研究对象

凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。有力地促进了诸如化学、物理、生物物理学和地球物理等交叉学科的发展。

众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。

凝聚态物理以万物皆成于原子为宗旨,以量子力学为基础研究各种凝聚态,这是一个非常雄心勃勃的举措。应该说出自于对固态中晶态固体的研究和对液态中量子液体的研究。在对这二种特殊态的长期研究中,人们积累了一些经验,也建立起了一些信心,并逐步把一些已有的方法推广用于非晶态和液晶乃至液态的研究,从而大大拓宽了视野,逐步形成了凝聚态物理。

今天,凝聚态物理的视野还在继续开拓。然而作为渊源的二种凝聚态即晶态固体和量子液体,时至今日仍然是它主要的研究对象,内容当然越来越丰富了,考虑的问题也越来越深入了。毕竟我们面临的是同一个自然界,许多现象和规律是普适的。人们正是通过对一系列特殊态的深入研究来逐步认识和掌握那些普适的规律。

材料物理学与凝聚态物理有什么区别?

材料物理是从物理学原理出发提供材料结构、特性与性能的一门新兴交叉学科,主要面向新能源与新信息等新功能材料探索。

凝聚态物理学是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和规律,从而认识其物理性质的学科。故与凝聚态物理学相比,材料物理更偏向于生活实用。

164 评论

45度向上傾斜

量子自旋液体态是一种具有长程量子纠缠的新奇物态,具有分数化的任意子的激发,是量子物质科学新范式的代表;关于量子自旋液体的研究,对于理解高温超导体的机理以及量子计算的应用具有重要的意义。因此,近年来一直是凝聚态物理学和量子物质科学的研究热点。量子自旋液体态通常在蜂窝状、三角格子、笼目结构等几何阻挫磁体中实现。其中,具有笼目结构的海森堡反铁磁体是实现量子自旋液体的一个理想体系。目前,公认的量子自旋液体候选材料仍然付之阙如,新材料的发现对研究量子自旋液体的物理实质具有重要的意义。 中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室的石友国研究员和冯子力博士生,凝聚态理论与材料计算重点实验室的孟子杨研究员,超导国家重点实验室的李世亮研究员以及日本国立材料科学研究所的衣玮等合作,合成了新的量子自旋液体候选材料Cu 3 Zn(OH) 6 FCl。这是该材料的首次合成,其具有完美的Kagome结构;同时,母体材料Cu 4 (OH) 6 FCl也被成功的制备出来,在17K左右存在反铁磁相变。在Cu 3 Zn(OH) 6 FCl中,Cu离子之间具有很强的反铁磁关联(大约19.2meV),低温热力学测量表明在0.8K以上,没有发现任何磁有序现象;同时,交流磁化率数据与频率没有明显依赖关系,排除了低温下系统进入自旋玻璃态的可能性,一系列的热力学测量表明Cu 3 Zn(OH) 6 FCl是一个量子自选液体的候选材料。进一步对比Cu 3 Zn(OH)Cl 2 , Cu 3 Zn(OH) 6 FBr这两个已知的量子自旋液体的体系,新的Cu 3 Zn(OH) 6 FCl体系与两者具有基本一致的行为,该材料体系的成功合成,为人们研究量子自旋液体行为提供了新的素材,为下一步的中子散射与其他动力学测量奠定了基础,同时,该材料体系也提供了一个研究从反铁磁长程序到量子自旋液体相变的新的研究平台。该工作发表在CHIN. PHYS. LETT. Express上[Chin. Phys. Lett. 36, 017502 (2019)]。 该工作得到了 科技 部重点研发计划(2016YFA0300502,2017YFA0302901,2016YFA0300604,2016YFA0300501),中科院(XDB28000000,XDB07020100,QYZDB-SSW_SLH043)以及国家自然科学基金委(11421092,11574359,11674370,11774399,U1732154)的资助。 图1:磁化率和比热的温度依赖关系。(a) 1KOe的场强下,Cu 3 Zn(OH) 6 FCl和Cu 4 (OH) 6 FCl的磁化率随温度变化曲线,纵轴采用对数坐标,可以清晰地看到Cu 4 (OH) 6 FCl在17K左右出现相变。插图是10 KOe场强下,Cu 3 Zn(OH) 6 FCl磁化率的倒数随温度的变化曲线。对高温下的数据进行居里外斯拟合得到居里温度为-223K,表明该材料具有很强的反铁磁关联。(b) 零场下,Cu 3 Zn(OH) 6 FCl, Cu 3 Zn(OH) 6 FBr, Cu 3 Zn(OH) 6 Cl 2 (Herbertsmithite)的比热数据,三者在低温下几乎具有一致的行为。插图:0.8K以上,Cu 3 Zn(OH) 6 FCl在不同磁场下的比热数据。降温至0.8K,仍没有观察到任何磁有序的现象,表明该材料是一个量子自旋液体候选材料。 文章链接: 近期热门文章Top10 ↓ 点击标题即可查看 ↓

291 评论

相关问答

  • 量子光栅的研究进展论文

    其实就是罗列,对于布拉格光栅商业化应用来说,掩模法是最好的,其他的你可以罗列,对于掩模板的方法可以详细的叙述,我空间就有不少,掩模法随便抄就可以。另外在叙述一下

    漫游的Alice 2人参与回答 2023-12-08
  • 量子自旋液体博士毕业论文

    几十年来,量子自旋液体仅作为一种理论存在。 固体由或多或少锁定在有序结构中的原子组成。另一方面,液体是由原子构成的,这些原子可以自由地相互流动和流过。但是想象一

    nellie0223 2人参与回答 2023-12-07
  • 一维量子液体研究进展论文

    自20世纪20年代量子理论出现以来,固体晶态的物理研究得到高度发展,进而演变为现在的凝聚态物理。接下来我为你推荐什么是凝聚态物理,一起看看吧! 什么是凝聚态物理

    喊我11就很好 2人参与回答 2023-12-06
  • 血液纳米机器人研究进展论文

    只要能够让医疗技术上升到一个更高的水平,那么就可以实现这样的技术,所以至少还需要4~5年的时间可以达成。

    桑塔卢西亚 6人参与回答 2023-12-05
  • 血液透析机研究进展论文

    护理毕业生论文题目 随着我国老龄化的加重,对护士人才的需求越来越大,各位,大家看看下面的护理毕业生论文题目吧! 1、基于计划行为理论注册护士帮助住院患者戒烟行为

    fabregas89 2人参与回答 2023-12-09