豆哥豆爷
导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。y=f(x)的导数有时也记作y',即 f'(x)=y'=limΔx→0[f(x+Δx)-f(x)]/Δx物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。求导数的方法(1)求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率 ③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C'=0(C为常数函数);② (x^n)'= nx^(n-1) (n∈Q); ③ (sinx)' = cosx;④ (cosx)' = - sinx;⑤ (e^x)' = e^x;⑥ (a^x)' = a^xlna (ln为自然对数)⑦ (Inx)' = 1/x(ln为自然对数)⑧ (logax)' =(xlna)^(-1),(a>0且a不等于1)补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。(3)导数的四则运算法则: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2(4)复合函数的导数 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。 导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!导数的应用 1.函数的单调性(1)利用导数的符号判断函数的增减性利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想.一般地,在某个区间(a,b)内,如果>0,那么函数y=f(x)在这个区间内单调递增;如果<0,那么函数y=f(x)在这个区间内单调递减.如果在某个区间内恒有=0,则f(x)是常函数.注意:在某个区间内,>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在内是增函数,但.(2)求函数单调区间的步骤①确定f(x)的定义域;②求导数;③由(或)解出相应的x的范围.当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数.2.函数的极值(1)函数的极值的判定①如果在两侧符号相同,则不是f(x)的极值点;②如果在附近的左侧,右侧,那么,是极大值或极小值.3.求函数极值的步骤①确定函数的定义域;②求导数;③在定义域内求出所有的驻点,即求方程及的所有实根;④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.4.函数的最值(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念.(2)求f(x)在[a,b]上的最大值与最小值的步骤①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.5.生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题.解决这些问题具有非常现实的意义.这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题.
默默一个人旅行
函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。
你教我吧 同样跪求
下载一片获奖论文,之后的所有基本就都解决了吧!!
有很多的,〈中等职业教育〉、〈中小学教学参考〉〈中学生数理化〉、〈教学探索〉、〈教学与管理〉〈吉林教育学院学报〉等,你可以根据你自己的要求选择,是要省级的还是国
随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出
数学论文范文参考 数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下