荷兰小乳牛
浅谈水质分析中的检出限及其确定方法
【摘要】 想要使水质分析监测报告更加真实,就只有正确的进行检出限的确定方法的使用。但是,就目前来看,人们虽然在检出限的使用措施和技术上有所改进,但是仍然无法得出较好的检出限结果。所以,在水质分析中的检出限的确定方法的研究方面,人们还需要积极的进行探索。因此,基于这种认识,本文对水质分析中的检出限的定义及分类进行了说明,并进行了确定检出限的常用方法的提出,从而希望为水质分析工作提供一些的参考建议。
【关键词】 水质分析;检出限;确定方法
Abstract wants to make the water more realistic analysis of the monitoring report, carried out using only the right to determine the method detection limit. But, for now, although people in the detection limit of the measures and the use of technology has improved, but still can not come to a better detection limit results. Therefore, the research method for determining the water quality analysis detection limits, people also need to be explored actively. Thus, based on this understanding, this paper analyzes the definition and classification of water quality detection limits have been described, and the method used to determine the limit of detection of the proposed thus hope to provide some reference suggestions for water quality analysis.
Key words water quality analysis; detection limit; determining method
引言
作为重要的质量控制参数,检出限常常在水质分析报告中出现。就实际情况而言,由于生活用水的水质在不断恶化,所以随着相关部门及机构对检出限的重视程度的提高,检出限的确定已经成为了水质分析工作中的重要内容。而为了更好的进行水资源的利用和开发,人们也要不断的进行检出限的确定方法的探索,从而更好的进行水质的控制,进而更好的促进人类的发展。所以,在这种情况下,相关人员就更应该关注水质分析的检出限的确定问题。
1、水质分析中检出限定义及分类
1.1检出限
在水质分析过程中,在特定置信限下进行某一特定分析方法的运用,从而检出的监测目标物的最小量,就是检出限。而在进行检出限确定的过程中,要进行特定的分析方法的使用。但是,由于检出限的分析方法不同,所以确定出的检出限的单位也并不相同。就目前来看,检出限可以用ug/ng等绝对量单位来表示,也可以用ug/g、10-6等浓度单位来表示[1]。
无论是利用哪种检测方法来进行检测,在检测目标物等于零的情况下,监测目标物的信号也会受到波动的影响。所以,一旦证据不充分,就不能认为检测到的信号是检测目标物所发出的。而与此同时,所得到的检测结果也不一定就是所要检测的目标物的检测结果。因为,检测信号的波动可能是由非检测物所造成的,所以检测的结果的真实性将不能被证明[2]。因此,进行检出限的分析时,要进行检测目标物和非检测物的检测信号的对比,然后在此基础之上进行产生差异的对应量的确定。此外,为了完全排除对检测结果的干扰,还要进行检测工作本身误差所导致的检测信号波动情况的测定。一般的情况下,检测工作本身的工作误差具有人为过失误差和不可回避误差。所以,如果可以使人为过失误差得到排除,就可以认为测量误差是偶然误差。而由于偶然误差往往是由检测信号波动存在所造成的,因此偶然误差往往具有正态分布的特性。而利用这一特性,就能进行信号波动区间的对应置信限的确定。同时,利用正态分布特性的标准偏差又可以进行波动区间大小的确定,进而进行置信区间值的获取。而在经过不限次数的多次测定后,3秒左右的置信区的置信度可以达到99.7%。但是,如果进行测定次数的限定,那么所测定出的3秒左右的置信区的置信度就只有95%[3]。因此,从这些内容可以了解到,在检测目标物为零的情况下,如果目标物产生的信号波动大于置信限,就可以证明信号的波动是由检测目标物所产生的。
1.2检出限的分类
1.2.1检出限
检出限的英文名为Detection Limit,简称DL。从本质上来讲,检出限就是一种量值,是以一定的置信水平为基础来进行分析方法和测试仪器灵敏度衡量的重要指标。
1.2.2仪器的检出限
仪器检出限的英文名为Instrument Detection Limit,简称IDL。从本质上来讲,仪器检出限就是分析仪器能够检测出的被分析物的最低量或浓度。所以,仪器检出限常常能体现出仪器的检出能力,并且是一个与信噪比有关的指标。一般的情况下,被分析物的浓度会与特定仪器能够从背景噪音中分辨出的最小响应信号相对应。但是,由于不受到任何样品制备步骤的影响,仪器检出限的值总是低于方法检出限。所以,在大多数最终数据报告中,仪器检出限并不会出现[4]。而在与不同仪器的性能相比较的情况下,仪器检出限常常会被使用,并且常用于进行数据的统计分析。
1.2.3方法检出限
方法检出限的英文名为Method Detection Limit,简称MDL。从本质上来讲,方法检出限就是利用某一种分析方法完成一项检测工作后,被测定物质被测定出来的最低浓度。但是,值得注意的是,这里的被测定物质产生的置信度要能达成99%,并能于空白样品相区分。具体来说,就是要利用分析方法测定出的空白实验值和选定的估算检出限公式来完成浓度的计算。所以,方法检出限不仅与仪器噪声有关,而且还与样品性质、预处理过程都有关系,并能够进行方法全过程的误差总和的确定。因此,从这里可以看出,方法检出限可以在衡量实验室、分析方法和分析人员效能方面被利用,并且可以被当做是一个相对的标准[5]。所以,作为分析化学中质量控制方面的重要概念和参数,方法检出限往往会在最终的数据报告中出现,并且可以显示出数据的不确定性和局限性。
1.2.4定量限与应用定量限
在正常实验室的常规操作下,在被测组分的浓度产生的信号大于空白样本浓度产生的信号的情况下,这一信号就能以指定的置信水平定量检出。而这一浓度,就是定量限。通常的情况下,人们往往以试剂空白的标准偏差信号的10倍信号的产生浓度为定量限。此外,随着介质、分析方法和分析对象的改变,定量限也会发生相应的改变[6]。而应用定量限指的则是在实际操作和常规分析的条件下能够达成的定量限。因为,这样的定量限可以使检测结果具有较高的准确性。所以,应用定量限常常是方法检出限的.3到10倍,指的是能够准确测定的最低浓度。
2、水质分析中的检出限确定方法
就现阶段而言,常用来进行水质分析中的检出限确定的方法有分光光度法、光皮分析法和定量测定下限等多种方法。而无论是那种检出限的计算方法,都有着基本相同的计算原理。此外,值得注意的是,检出限的确定要根据选用的检测方法来完成。
2.1分光光度法
在水质分析过程中,分光光度法是常规的检出限的确定方法。首先,利用分光光度法进行检出限的确定,要先进行空白值的测量。而这里所指的空白值,就是利用实验用水来进行检测样本的替代,然后利用与样本测定同样的步骤来进行实验用水的测定,而最后所获得测定值就是空白值[7]。就实际情况而言,实验用水质量、器皿洁净程度、试剂纯度、仪器性能、试验环境和人员操作等多种因素都会对空白值的测定造成影响。所以,只有各方面条件都比较完备的实验室的分析方法的空白值才会在非常小的范围内波动,从而使空白值保持一定的准确率。而空白值的测定也有着具体的测定方法,就是5到6个批次进行空白值的测定。而在每一个批次的测定过程中,需要对平行双样进行测定,同时在测定后进行标准曲线的制作,并在一段时间内进行同一批样本的重复测定。但是,如果使用的测定方法的数据波动变化相对较大,就可以进行约10个批次的分析。其次,在空白值测定完成后,就要进行检出限计算公式的选择。而一般的情况下,检出限计算公式的选择都是按照《全球环境监测系统水监测操作指南》中的规定来进行的。当空白的测定次数大于等于20时,公式为D.L=4.6σwb。其中,D.L指的是检出限,而σwb指的则是空白平行测定的标准偏差。但是,在空白的测定次数小于20时,就可以用Swb来进行σwb的替代,具体的公式为。其中,D.L代表着检出限,tf则表示显著性水平,Swb则表示空白平行测定标准差。
2.2光谱分析法
利用光谱分析法进行检出限的确定也是在水质分析中比较常见的。首先,利用光谱分析法进行检出限的确定需要进行超过20个的空白样品的测定。而在进行空白样品检测时,空白信号的标准偏差为Sbo。就实际情况而言,在某些水质分析方法中,空白值的测定结果趋近于零。所以,可以用约等于零的标准溶液来进行纯水的代替,从而进行空白值的测定。因为在这种条件下,测定出的数据将更具有价值,所以可以为下一阶段的计算提供比较可靠的数据。但是,在正常的情况下,往往接近空白的加标浓度是预期检出限的1到3倍。所以,需要根据已定的分析方法进行测定结果的预处理[8]。其次,在空白值测定完成后,利用光谱分析法进行检出限的确定同样要进行检出限计算公式的选择。根据有关规定,通常使用D.L=K Sb/a来进行检出限的计算。其中,Sb代表着空白多次测定的信号的标准偏差,a代表着分析方法的灵敏度,而K往往等于3,从而便于进行检出限D.L的计算。另外,利用光谱分析法进行检出限的确定时,需要注意空白测定的过程中的同一日期内多次测定的变动风险存在问题。而如果在不同的日期内进行多次空白测定,也同样存在着变动风险。因此,由于公式中并没有体现出对这一问题的考量,所以要进行这两种因素的全面的考量,进行每个批次的平行双样的测定,同时进行对应的标准曲线的制定,并保证测定的批次大于10次的测定在特定的时间段内完成。而这样一来,空白值的浓度的标准偏差就可以被计算出来,而这一值的3倍就是需要测定的检出限。
2.3定量测定下限
利用定量测定下限来进行检出限的确定时,可以根据有关规定将测定下限认定成10倍空白标准偏差对应的浓度值,既3.3倍的MDL,而相应的置信度则为90%。但是需要注意的是,不同的规定中的测定下限不同,而相应的置信度也不相同。在HJ/T168-2004导则中,将以4倍检出限浓度为测定下限,既4倍的MDL。而在这种情况下,相对标准偏差约为10%。此外,在实际分析的过程中,测定下限的确定还会受到仪器设备响应信号稳定状态、校准曲线标准系统各点分布等多种因素的影响[9]。而与此同时,还要使实际测定下限大于理论的测定下限,并要保证测定下限与校准曲线各点分布相对应。此外,在条件允许的情况下,还要根据测定下限的精密度进行标准偏差的测试,进而保证标准偏差小于10%。而在实验的过程中,如果低浓度样品的精密度要求较高,就可以5倍以上的MDL为测定下限。
2.4其他检出限确定方法
在水质分析过程中,还可以利用其他方法进行检出限的确定。一方面,可以使用容量法进行检出限的确定。具体来说,就是利用滴定管产生的最小液滴体积来进行检出限的计算。另一方面,还可以使用总量法进行检出限的确定。而该种确定方法主要与天平的灵敏度和监测样品的体积有关。所以,可以根据这两方面的因素进行检出限的计算。
结论
总而言之,从本文的研究来看,水质分析中的检出限可以被分成是仪器的检出限、方法检出限、定量限和应用定量限等多个种类。而目前常用来进行水质分析的检出限确定的方法则有分光光度法、光谱分析法和定量测定下限等多种方法。所以,从这里可以看出,我国对水质分析中的检出限及其确定方法已经有一定程度的研究。但是,由于水质环境仍然在不断变化,所以现有的检出限确定方法已经无法满足水质分析的工作需要。因此,相关部门还应该不断的进行检出限的确定方法的优化,进而促进水质分析工作的发展。
参考文献
[1]叶洞君.解析水质分析中的检出限及其确定方法[J].河南科技,2013,04(01):197.
[2]蔡英.水质有机污染物的分析方法研究[D].湖南师范大学,2010.
[3]王路.水质分析中仪器法的检出限的计算[J].环境与发展,2014,03(01):175-176.
[4]陈爽,徐接胜.关于检出限的定义、分类及估算方法的探讨[J].广州化工,2014,18(42):137-139.
[5]李君霞.分析检出限的实验测量和计算方法的研究[D].北京化工大学,2012.
[6]雷雯雯,雷庆,栗颜博.从多种角度分析水质化验中的检出限[J].黑龙江水利科技,2011,01(01):92.
[7]夏春,陈 琨 .水质分析方法中检出限的计算[J].广州化工,2014,10(42):170-171.
[8]邢飞.TMP废水有机物监测方法的研究[D].河北工程大学,2013.
[9]朱海豹,钱亚玲,唐红芳.色谱分析中的检出限和定量下限及其在职业卫生检测中的应用[J].中国卫生检验杂志,2012,09(22):234-235.
大LY的小世界
我国自来水水质现状改革开放近三十年来,我国经济发展迅速,但环境污染日益严重,尤其是饮用水污染尤为突出。目前自来水的不安全性主要体现在两个方面:1、 水源污染:2004年12月22日水利部部长汪恕诚表示,目前全国70%以上的河流湖泊遭受不同程度污染,水污染不仅加剧了水资源的短缺,水质的恶化严重威胁着人民群众的身心健康。目前全国有3亿多人饮水不安全,其中有1.9亿人饮用水有害物质含量超标。2、 自来水输水镀锌管网二次污染:自来水厂输出自来水时,一般是合格的。当经过漫长的输水管网及水塔、水箱等设施后,导致自来水质严重污染。我国在60年代起,城市内自来水输水管材质采用的是镀锌管,其存在严重的污染隐患,如:生锈、结垢、腐蚀等。在自来水停水后又来水时,通过水龙头可以看到很多铁锈。这是由于自来水停水后又来水时,自来水冲击镀锌管上的铁锈,脱落后进入自来水中的。因此可以确定的是输送自来水的镀锌管在自来水中是长期生锈的,平时这些铁锈是溶解到自来水中,并且人的肉眼一般是无法直接看见的。通过净来牌的水质演示器可以清楚地观察到自来水中的铁锈。多数的高楼水箱、水塔等二次供水设施长期无专人护理,密封条件差,风沙吹落到水箱或水塔。致使各种沉积物越来越多,长出青苔;滋生细菌、病毒等,甚至出现腐烂的动物尸体,并且得不到及时清洗,严重污染了自来水水质。2004年10月,建设部对全国36个大中城市城镇饮用水抽检中,仅有9个城市全面合格。水质污染的危害水,人类赖以生存和发展的珍贵资源。没有水就没有生命,就没有人类的文明进步,就没有社会经济的稳定和发展。然而,由于人口激增和社会经济的快速发展,水资源遭受的污染也越来越严重,人类日常生活用水安全受到越来越严重的威胁。生活饮用水质的好坏与人们的身体健康密切相关。据世界卫生组织(WHO)调查表明,全世界80%的疾病和50%的儿童死亡都与水质不良有关。由于水质不良导致的消化疾病、传染病、各种皮肤病、糖尿病、癌症、结石病、心血管病等多达50多种;由于水质污染,全世界每年有5000万儿童死亡,3500万人患心血管病,7000万人患结石病,9000万人患肝炎,3000万人死于肝癌和胃癌。在我国,因为水质不良而引发的地方病也时有报道,如深圳商报的《淮河支流出现癌症村》,南方都市报的《清远“短命村”肇因水污染 全国四分之一人口饮用不洁水》及新京报的《浙江水危机,催生“水难民”》,06年松花江水污染等水污染问题也不断出现,解决水质污染问题已经是迫在眉睫。解决水质污染的途径改善水质的途径一般有:1、水源水保护;2、自来水厂工艺设备改造;3、管道分质供水;4、家庭管网终端水质净化。为控制水源污染,应禁止在水源地流域范围内发展污染严重的产业,以减少污染物的排放。但是从目前经济发展的势头和国家相关法律法规及执行力度的实际情况看,要在短期内使水源水质得到改善是一个非常严峻的课题,必将有一个漫长的过程。自来水厂的改造可从一定程度上提高自来水的质量,但不能从根本上解决问题,尤其是管道的二次污染问题。而且改造费用巨大,从我国目前的国情来看,可以预见自来水厂设备与技术的更新和自来水管网的整体改造在10-20年内是难以实现。即使是采用管道分质供水,其工程造价、设计施工、管理维护、水费收取、卫生指标及安全程度等方面都存在诸多问题。另外,管道分质供水只能针对新建楼盘,对于我们现有的大量住宅小区,由于牵涉到管道的重新铺设问题,水污染问题还是无法解决。国际卫生组织研究表明,享受健康用水最为有效的办法是在市政供水的管网末端即家庭用水终端加装一个水质净化器。
姐的烂手机
为了应用水质分析资料对水文地球化学问题进行正确解释,首先应对水质分析结果的可靠性进行检验,正确的分析结果是获得可靠结论的基础。水质分析结果的可靠性检验一般可用下述方法。
1.电中性条件
从宏观上讲,电解溶液的一个基本条件是电中性条件,即溶液中的正离子电荷总数等于负离子电荷总数。其数学表达式如下:
∑Zmc=∑Zma
式中:mc和ma分别为阳离子和阴离子的摩尔浓度;Z为离子的电荷数。此式称为电中性方程。实际上,地下水也是一种复杂的电解溶液,也遵循电中性方程。地下水的电中性方程是以其常量组分的电中性形式表达的。
水文地球化学基础
式中:阴、阳离子前的数字为离子的电荷数,方括号表示其摩尔浓度。由于地下水是一种复杂溶液,除常量组分外,还有微量组分,因此,上式近似相等。在实际应用中常用此中性方程检查分析结果的误差,其表达式如下:
水文地球化学基础
式中:E为电荷平衡误差,%。一般来说,E的绝对值小于5%时是允许的。电中性方程不仅用于水分析结果,还用于分析其他的水文地球化学问题。
2.分析结果中计算值的检验
总溶解固体 如果总溶解固体是计算值,应检验其数值是否减去了1/2的HCO—3含量,这是水质分析结果中最常见的一种错误。
Na++K+在简分析中,Na++K+是计算值,其计算方法是:
(Na++K+)(毫克当量数)=∑Nc—(Ca2++Mg2+)(毫克当量数)
([Na+]+[K+])(mg/L)=25(Na++K+)(meq/L)
式中:Nc指阴离子毫克当量数总和。
Na的原子量是23,K的原子量是39,一般的地下水中,K+约为Na++K+的1/10,故在上式中乘以25。国内的一些水质分析资料中,常常在式中乘以23,严格来说是不正确的。
硬度 总硬度也是计算值,可按下述方法进行检验:
总硬度(以CaCO3计,mg/L)=(Ca2++Mg2+)(meq/L)×50
TDS 如果水质分析结果中有实测的TDS值,应求得TDS的计算值,以检验TDS实测值的可靠性。根据经验,两者的误差应符合下述要求:当TDS小于100mg/L时,相对误差应小于10%;当TDS为100~1000mg/L时,相对误差应小于7%;当TDS大于1000mg/L时,相对误差应小于5%。
3.碳酸平衡关系检验
当pH值小于8.34时,水质分析结果中不应出现 ,因为在这样的pH值条件下, 的常规测定方法不能检测出微量的 ;同样,当pH>8.34时,水质分析结果中不应出现H2CO3。如果分析结果不符合上述的情况,则说明pH值或 和H2CO3的测定有问题。
4.其他检验方法
1)在一般的地下水中,Na+的含量总是大于K+的含量,如果出现反常情况,则分析结果就值得怀疑。
2)地下水中的Na+或Na++K+一般不会等于零,如果出现这种情况,可认为分析结果有误。
3)大量的统计资料表明,水溶液的电导率与总溶解固体之间有较好的相关性。根据有关报道,对于一般的地下水来说,电导率与TDS之间有如下经验关系:
TDS=K×电导率
式中:K=0.55~0.75;TDS单位为mg/L;电导率的单位为mS/m。当水中的阴离子以 和Cl—占优势时,K接近于0.55;当水中的 浓度较高时,K接近于0.75。对于TDS大于50000mg/L和TDS很低的水来说,TDS与电导率的相关性较差。对于源于同一含水系统的一系列水样来说,TDS与电导率的关系可以很好地建立起来,利用这种关系,可对水质分析结果的可靠性进行检验。
针对鱼塘水质监测系统的论文主要有以下几个问题需要解决:(1)如何选择适合的传感器和监测设备,以确保系统的数据采集和处理的准确性和可靠性;(2)如何确定监测参数的
水质检测主要考虑对人体健康和环境的影响,其水质标准除了物理指标、化学指标之外,还有微生物质保等。水是一切动植物和人类赖以生存的不可或缺的资源,但时下由于资源的过
地表水水环境监测进展与问题论文 摘要 :近年来由于工业化的影响,地表水资源受到了严重的污染,状况日益恶化。这种情况下我国的水资源利用情况逐渐的紧张起来,当前阶段
在平时的学习、工作或生活中,大家都接触过作文吧,作文根据体裁的不同可以分为记叙文、说明文、应用文、议论文。还是对作文一筹莫展吗?下面是我帮大家整理的做核酸检测作
某海域海水水质监测分析项目色、臭、味、水温、pH、悬浮物质二、设计要求:1. 依据监测与分析的结果能反映被测海域的海水水质现状和减轻污染的措施。(“监测与分析的