• 回答数

    2

  • 浏览数

    282

李家子弟平平
首页 > 学术期刊 > 数学教育研究生论文开题报告

2个回答 默认排序
  • 默认排序
  • 按时间排序

小阿殷-

已采纳

数学研究生开题报告

导语:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。下面和我一起来看数学研究生开题报告,希望有所帮助!

论文题目:高中数学研究性学习的实践探索

一、选题背景

随着社会的发展,人们深刻地认识到,想要一个国家向前不断的迈进,其源源不竭的动力就来源于一种精神,即创新精神。新一轮有关基础教育的课程改革中,我们国家教育部出台了有关以全面推进素质教育为目的的深化教育改革的文件,其明确地提出了要符合当今时代的发展要求,注重对学生个性的发展,以培养学生的创新性精神和实践性能力作为其重点内容。

经过十年的实践,对课程的改革取得了明显的效果,并且为了贯彻落实《国家中长期教育改革和发展规划纲要》,适应新时期全面实施素质教育的要求,我们国家教育部专家对义务教育阶段各个学科的课程标准进行了修订和完善,新增了创新意识作为关键词,将创新意识的培养作为了现代化教育的基本任务。而研究性学习是我国基础教育课程的重大突破,是当前教育改革的重点和热点内容,也是当今国际上比较普遍认同和实施的一种新的学习方式,对于调动学生的积极主动性、培养学生的创新性精神和实践性能力,开发学生的内在潜力,具有重要的价值意义。

国外对研究性学习的研究可追溯到苏格拉底,他将教师比喻为“知识的产婆”,并在教育方面做出的重大贡献是提出了要注重启发学生学习与思考的方法。从18世纪起,研究性学习就得到人们的广泛认识。18世纪末到19世纪,法国启蒙学者卢梭提出了要遵循着人类的天性发展。继卢梭之后,著名的教育家裴斯泰洛齐提出了“教育心理化”,他倡导在活动过程当中,要对儿童内在的能力得以培养和发展的同时,还要注重儿童的心理发展特点以及儿童之间的个别差异性;他们的思想都为今天的研究性学习奠定了一定的思想基础。

在20世纪左右,美国的杜威、克伯屈等人在这方面同样进行了研究,影响最大的是美国着名哲学家、教育家杜威,他主张“从做中学”,认为学生仅仅通过教师讲解或者看书所获取的知识都是虚无飘渺的,只有通过“活动”获取的知识才是实实在在的知识、才能真正的促进学生的身心以及未来发展。在20世纪中期,布鲁纳提出了认知发现学习理论。他认为学生非被动的接受知识,而应该主动的去探究知识;施瓦布也提出了“探索研究性学习”,他倡导通过探索研究来进行对所学知识的掌握,从而使得学生探索研究的能力得以发展。

二、研究目的和意义

21世纪初,新一轮的基础教育课程改革由教育部正式的开启了,将“研究性学习”融入高中必修课之中,以此,作为我国高中课程改革的一项重大举措。从此之后,“研究性学习”成为我国基础教育变革当中一门独树一帜的课程,它掀开了基础性教育的新一页,无可置疑,它已成为我国当前课程变革中最吸引眼球的一项举措。

在高中数学的学习过程中安排了研究性学习课程,不但对于学校构建符合素质教育思想和迫切需要的新型人才培养模式是一种突破性的改革,而且还可以丰富教学模式,从而使得教师和学生在知识、技能、实践等方面更上一层楼。

具体来讲:

第一,有作用于课程的变革。革新到目前为止,研究性学习已经不言而喻地成为了我国基础教育课程变革的突出点。作为一门基础学科的数学,它是中小学革新的龙头,所以开展数学研究性学习对于课程的变革具有重大的意义与价值。

第二,有作用于教师教学方式的变革。教育文件提出了要注重对教师由强硬灌输到鼓励、引导等教学方式进行转变。

第三,有作用于学生学习方式的革新。教育出台了有关在课堂中,针对学生死记硬背进行变革的文件,具体内容为不仅要倡导学生自己积极参与、还要培育学生获取未知知识的能力、分析和解决问题的能力,收集和处理信息的能力以及与人沟通交流的能力等。因此,怎样让学生从被动的学习方式变更为积极主动探索的学习方式,成为教育一线工作者乃至科学家们进行研究性学习研究的重要原因。

三、论文研究涉及的主要理论

数学研究性学习是指学生在数学教师或者相关学科教师的指引下,从各类学科以及实践活动中选取并设定为研究性学习的课题,运用类似于数学学科的科学研究方法去积极主动的获取数学知识、并应用数学知识来解决相关问题,使得学生对数学知识把握的同时,体验、了解、学会和应用数学学科所蕴含的研究方法,以及对学生科学精神的培养以及科研能力发展的一种学习方式。

在数学研究性学习的实施过程当中,学生不仅明确地了解了活动的程序,还深深地体会到数学这门学科所带给人们的奇妙之处,更加关键的是改变了学生学习的传统思维模式,培育了学生独立自主的学习能力、勇于探索的科学精神以及相互协作的团队意识。其活动过程的实施,对于传统的教师模式也提出了一定的挑战,具体来讲,就是教师主要起着指路人的'作用,对学生活动过程中的具体表现给予适时的正确评判,督促学生有效的完成各个阶段的活动任务,从而使学生的主动性得以充分调动。

四、论文研究的主要内容及研究框架

由于没有研究性学习的具体教材做支撑,那么,对于一线教师而言,确定研究性学习内容是十分困难的事情,但是我们知道类比方法可以引出很多的内容,从中可以启发我们通过研究性学习相关理论的学习,运用类比的方法,从如下两个不同层次进行研究性学习的实践探索,分别为从三角形到四面体已知类比开展的研究性学习活动作为层次一;

从三角形角平分线和旁切圆半径的不等式分别类比到四面体以获得四面体中新成果为目的所开展的研究性学习活动作为层次二。

并且层次一从活动的组织与安排、资源的收集、分析与利用以及三角形与四面体已知形式与证法的类比情况等方面都为层次二做了一定的铺垫,而层次二也是对层次一的升华。

具体针对层次一开展研究性学习实践探索的研究思路,简要地做如下介绍:

第一,让学生从已学过到的有关三角形与四面体的已知知识中选定研究课题;

第二,通过指导教师提供有关研究性学习活动方案的一般步骤作为参考,引导学生完成该课题活动方案的设定;

第三,在本层次中,由于学生可以通过收集、分析信息,采用小组合作的学习方式完成该课题的研究,因此具体活动实施根据每组情况在课后完成;

第四,每个小组选取代表针对于小组成员的参与程度、取得的主要成果、得到的新猜想、没有解决的问题等进行相关汇报;

最后,针对每组出现的问题,进行组间与师生间的相互交流,从而完善课题以及深化课题。

针对层次二的第一个课题开展研究性学习实践探索的研究思路,简要地做如下介绍:第一,由指导教师提供给学生有关三角形内角平分线的两个不等式,通过文献的检索与查新,确定到目前为止其对应在四面体中仍没有被研究,从而将其确定为所研究课题的背景;

第二,根据课题背景,帮助学生选定研究课题为三角形角平分线的两个不等式到四面体二面角平分面不等式的推广;

第三,通过师生间的共同分析,从而确定活动的目标与重难点;

第四,将对课题内容感兴趣以及数学成绩优异的学生组成活动兴趣小组来开展研究性学习;

第五,收集、学习、研讨三角形中不等式的主要5种证法,深刻的领会其证明思路、相关内容与研究方法;

第六,广泛收集并学习四面体中有关的理论知识,为接下来开展研究工作做好充分的准备;

第七,利用类比猜想出四面体中相应不等式的形式;

第八,通过指导教师的引导,并利用类比尝试给出四面体中相应不等式的证明过程。

层次二的第二个课题所开展的研究性学习实践探索与本层次第一个课题相类似,所以由学生尝试着独立地去完成,指导教师进行适当的指导。

五、写作提纲

第一章绪论

1.1研究背景

1.2研究目的

1.3研究思路

第二章研究性学习理论的相关概述

2.1研究性学习的相关概念

2.2研究性学习的特点

2.3研究性学习的目标

2.4数学研究性学习课题的选取

2.5数学研究性学习的实施

2.6类比与数学研究性学习

第三章以三角形到四面体已知类比开展研究性学习

3.1学情与目标分析

3.2学习活动设计

第四章以三角形到四面体类比开展研究性学习获得创新成果

4.1从三角形角平分线到四面体二面角平分面类比开展研究性学习

4.2从三角形旁切圆半径到四面体旁切球半径类比开展研究性学习

第五章结语

5.1研究的基本结论

5.2研究的主要反思

六、目前已经阅读的主要文献

[1]O.Bottema着,单墫译.几何不等式[M].北京:北京大学出版社.1999:77.

[2]陆高原.研究性课题选择的策略[M].上海:上海大学出版社,2000(11):20.

[3]沈文选.单形论导引--三角形的高维推广研究[M].长沙:湖南师范大学出版社,2000:35.

[4]应俊峰.研究型课程[M].天津:天津教育出版社,2001:44.

[5]中华人民共和国教育部.基础教育改革纲要(试行)[M].北京:人民教育出版社,2001:1-24.

[6]王升.研究性学习的理论与实践[M].北京:教育科学出版社,2002:155-161.

[7]霍益萍.让教师走进研究性学习[M].南宁:广西教育出版社,2002:4.

[8]李伟明.研究性学习案例集[M].桂林:广西师范大学出版社,2002:42.

[9]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004:40-105.

[10]杨路,张景中.预给二面角的单形嵌入nE的充分必要条件[J].数学学报,1983,26(2):250-254.

[11]苏化明.预给二面角的单形嵌入nE的充分必要条件的一个应用[J].数学杂志,1987(1):10-13.

[12]杨世国.单形的构造定理[J].数学季刊,1991,6(4):102-103.

[13]苏化明.关于单形二面角平分面面积的不等式[J].数学杂志,1992(3):315-318.

[14]苗国.四面体的五“心”重心、外心、内心、旁心、垂心[J].数学通报,1993(9):21-24.

[15]林祖成.关于n维单形的一类不等式[J].数学的实践与认识,1994(3):50-56.

[16]王庚,杨世国.预给二面角的单形在nE中的嵌入[J].安徽师范大学学报(理科版),1994,17(4):11-16.

[17]李永利.关于四面体的两个不等式[J].数学通讯,2001(9):30-31.

[18]王建华.从三角形到四面体-类比与推广思维的一个尝试[J].中学生数学,2002(8):3-4.

[19]杨世国.关于内接单形的一个不等式[J].数学杂志,2003(2):218-220.

[20]陈安宁.关于对学生“问题意识”的培养[J].九江师专学报(自然科学版),2003(5):35.

[21]钱旭升.我国研究性学习的研究综述[J].教育探索,2003(8):22.

273 评论

笑之典典

数学硕士论文开题报告

导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!

一、数学文化的内涵

数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。

受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。

19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(R.Wilder),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。

他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。

二、数学文化研究的意义

区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。

数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。

数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。

数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。

如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。

数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。

三、数学的文化特征

1.数学的抽象性

在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫(A.D.Aleksandrov)说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”

数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。

2.数学的确定性

数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。

然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”

3.数学的继承性

科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。

从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。

四、提纲

目录

第1章 概述

1.1文化的内涵

1.2文明的内涵

1.3数学文化的内涵

1.4数学文化研究的意义与现状

第2章 数学的文化特征

2.1数学的文化特征

2.1.1数学的抽象性

2.1.2数学的确定性

2.1.3数学的继承性

2.1.4数学的简洁性

2.1.5数学的统一性

2.2数学的功能特征

2.2.1数学的渗透性

2.2.2数学的传播性

2.2.3数学的工具性

2.2.4数学的预见性

2.3数学的艺术特征

2.3.1数学的艺术性

2.3.2数学与音乐

2.3.3数学与美术

2.3.4数学与文学

第3章 数学与人类文明

3.1数学是人类逻辑能力的来源

3.2数学唤醒人类理性精神

3.3数学促进人类思想解放

3.4数学改善人类生活

3.5数学完善人类品格

3.6数学提高人类文化素质

第4章 数学与社会文明

4.1数学促进社会进步

4.2数学推动知识发展

第5章 我国数学文化与数学教育的研究进展

5.1数学文化与数学教育研究综述

5.2数学文化与数学教育活动进展

第6章 对数学教育的若干思考

6.1数学素养是国民文化素质的重要构成.

6.2数学教育现状

6.3数学文化教育亟需解决的问题与建议

结束语

参考文献

致谢

五、亟需解决的问题与建议

1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。

2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学

六、进度安排

20XX年11月01日-11月07日 论文选题。

20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。

20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。

20XX年12月10日-12月19日 确定并上交开题报告。

20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。

20XX年02月16日-02月20日 完成论文修改工作。

20XX年02月21日-03月20日 定稿、打印、装订。

20XX年03月21日-04月10日 论文答辩。

七、参考文献

[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.

[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.

[3]范森林.中国政治思想的起源[M/OL].

[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.

[5]郑毓信.数学哲学的内容和意义[J/OL].

[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.

[7]顾沛.数学文化[M],北京:高等教育出版社,2008.

[8]南开大学数学文化课程简介.

[9]吉林大学本科生数学文化课程教学大纲--数学文化.

[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.

[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.

[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).

[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.

[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.

[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.

[16]数学地质四川省高校重点实验室.

[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.

286 评论

相关问答

  • 数学教育研究生论文开题报告

    数学研究生开题报告 导语:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。在人类历史发展和社会生活中,数学发挥着不可替

    李家子弟平平 2人参与回答 2023-12-09
  • 佛教研究生论文开题报告

    佛教譬喻故事开题报告这么写:1、说明论文的主题、范围和目的。2、说明本研究的起因、背景及相关领域简要历史回顾。3、预期结果或本研究意义。4、绪论一般不分段,长短

    鱼米芝香 2人参与回答 2023-12-07
  • 学生安全教育论文开题报告

    开题报告虽然多数学生都是第一次写,但只要你认真写并按照学校的格式要求根据按老师意见修改总会通过的,有什么不懂的地方可以问我,提供一个范例范本供参考祝开题报告写作

    舟舟的食儿 2人参与回答 2023-12-08
  • 学前教育科学研究论文开题报告

    学前教育毕业论文开题报告的写法如下: 1.首先先搞明白为什么要写开题报告: 我们在做正式的研究之前,让你树立好三个问题,第一个你要写什么,其实比如之前我们不是确

    人艰不拆XP 2人参与回答 2023-12-09
  • 教育学本科生论文开题报告

    据学术堂了解撰写本科毕业论文的开题报告,一定不要急于下笔,首先要理清思路。理清思路的过程就是你报告的一个大纲,建议开题报告的模板进行思考,并查找相关资料。1.我

    王玉娜大王 6人参与回答 2023-12-07