• 回答数

    2

  • 浏览数

    273

阿优米酱
首页 > 学术期刊 > 关于函数极限的论文文献

2个回答 默认排序
  • 默认排序
  • 按时间排序

選擇淡定

已采纳

第28卷 第12期 湖北广播电视大学学报 Vol.28, No.12 2008年12月 Journal of HuBei TV University December. 2008, 159~160 探讨洛必达法则求解极限 林清华 (福州教育学院,福建 福州 350001) [内容提要] 极限作为重要的思想方法和研究工具贯穿于高等数学课程的始终。本文通过对洛必达法则求极限的深入探讨,针对不同题型归纳总结出具体的化简转化的方法;利用数列极限和函数极限的关系间接地应用洛必达法则求数列未定式,充分体现了洛必达法则应用的广泛性,给求极限提供了强有力的工具。 [关键词] 极限;归结原则;洛必达法则;等价无穷小;泰勒公式;对数恒等式变换 [中图分类号] G42 [文献标识码] A [文章编号] 1008-7427(2008)12-0159-02 极限是初等数学与高等数学接壤部分,是高数中最基本的概念。导数、微积分等都是建立在极限概念的基础上,因此熟练掌握求极限的方法,对于学习后继课程至关重要。洛必达法则求未定式的极限是微分学中的重点之一而且应用广泛,本文就此方法进行探讨。 一、洛必达(L’Hospital)法则 定理1 若函数f和g满足 =0;(2)在点x的某空心邻域Uo(x)两者都(1)limf(x)= 00limg(x) x→x0 x→x0 归结原则的意义在于把数列极限归结为函数列{x}极限都存在且相等。 n数极限问题来处理,但事实上函数极限的求解可以使用具有厚实理论基础的洛必达法则,所以我们常常间接地应用洛必达法则求数列未定式,把大多数数列极限转化为函数极限来求解。 存在,那么. 推论 若 x→+∞ limf(x) limf(n)=limf(x) n→∞ x→+∞ 例1:(华中师范大学,1996年)求极限: n2. n→∞2nlim (3)可导,且g′(x)≠0; f(x)f′(x) =lim=Ag(x)x→x0g(x) x→x0 lim f′(x) =Ag(x) (A可为实数,也可为±∞或∞),则 。 分析:若按数列求极限的方法技巧来求解,将会比较繁琐,考虑 到函数极限x2存在,且如果使用洛必达法则,则会比较容易求解, limx→∞2故根据推论1,先求 x→x0 lim 定理2 若函数f和g满足(1)limf(x)=limg(x)= x→x0 ∞;(2) x→x0 x→x0 解:因为 在点 且g′(x)≠0;(3)x0的某空心邻域Uo(x0)两者都可导, lim f(x)f′(x) =lim=Ag(x)x→x0g(x) x→∞ lim x2,在根据归结原则有limn=x2. limlimn→∞2x→∞2x→∞2x ,所以n2=0. x22x2 lim 2=lim x→∞ 2 2ln2 =lim x→∞ 2(ln2)1 =0 n→∞ 2 lim f′(x) =Ag(x) 例2:求lim a→∞ 解:原式=limnn

296 评论

jessica8918

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限1.1数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.1.2数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=a.2.关于函数极限2.1x→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=A.2.2x→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=A.3.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

117 评论

相关问答

  • 关于函数极值及其应用毕业论文

    数学与应用数学幂函数论文,行咯,多少字的,姐给.

    坚持到底2011 3人参与回答 2023-12-10
  • 高数极限论文参考文献

    参考文献那么多,也要看你是写哪一方面的。

    xxs的吃喝玩乐 3人参与回答 2023-12-10
  • 函数极限的求解方法毕业论文

    有5种方法,如下: (1)利用洛必达法则与等价无穷小代换对抽象函数的00型极限可得结论:设当x→x0时f(x)与g(x)为无穷小,g(x)~(x-x0)β,取k

    辛燃arzue 3人参与回答 2023-12-05
  • 函数极限论文参考文献

    大概方向能在稍微具体点么?数学教学这方面的话省级的《教育界》可以考虑,性价比不错,同类期刊也算比较不错的,白杜输入壹品优,我发过教育界的稿子的,有编辑邮箱的。

    紫晨郡主 3人参与回答 2023-12-11
  • 有关于求极限的毕业论文

    毕业论文的开题报告一般会涉及到题目的研究背景及研究意义等。该公式一般适用于*/∞型数列极限和0/0型数列极限的计算和证明问题。

    Sissy有福相 3人参与回答 2023-12-07