梦叶草2011
第一部分:题头 题头含标题标题要求直接、具体、醒目、简明扼要(25字以内),3号宋体加粗,居中编排。第二部分:提要 提要部分含摘要、关键词等。分别以【摘要】、【关键词】(小4号楷体加粗)开头,内文用5号楷体,各空2字格编排。 摘要是论文内容的高度概要,是不加注释和评论的简短陈述,具有独立性和自含性。其内容应说明论文的主要研究内容、研究方法、研究结论等。论文中文摘要一般以3—5行为宜。 关键词3-5个,应能反映全文的主题、主要内容、主要思想、主要观点等,关键词之间以分号隔开,关键词结束不用标点符号。 第三部分:正文 正文是论文的核心内容,含引言与本论。 引言,或称小引,要简要说明论文话题的缘起、价值与意义、研究方法等,直接“引入”本论。 本论是主体部分,内容须观点明确、论据充分、论证严密、逻辑清晰、层次分明、语言流畅、结构严谨。 正文应按照内容层次分节,编号,要层次分明,用5号宋体。各种标题要求如下: 1. 一级标题:以阿拉伯数字排序标号,数字后用英文句号“.”,如:1. …。一级标题标号与标题采用小3号黑体,单独一行,居左顶格编排。 2. 二级标题:用阿拉伯数字在一级标号后增第二层标号顺序标注,两层标号之间用英文句号“.”分割,第二层标号后不使用任何符号,如:2.3 …。二级标题标号与标题采用4号黑体,单独一行,居左顶格编排。 3. 三级标题:用阿拉伯数字在二级标号后增第三层标号顺序标注,各层标号之间用英文句号“.”分割,第三层标号后不使用任何符号,如:1.2.4…。三级标题标号与标题采用小4号黑体,单独一行,居左顶格编排。 各级标题字数均以不超过1行为限,标题结束处不使用任何标点符号。 4.定义:定义在各一级标题下顺序标号,比如,第1节第二个定义为定义1.2。 5.结论与说明:定理、引理、推论、注记等结论与说明在各一级标题下按顺序统一标号,比如,第2节第3个上述定理、引理、推论或注记,如果是引理则标注为引理2.3,如果是推论则标注为推论2.3。 6.教学案例示例:各种举例在各一级标题下按顺序统一标号,比如,第2节第3个例子应标注为例2.3。定义、定理、引理、推论、注记、示例等均空2格编排,各字头(推论2.3、引理2.3等)为小4号黑体,其后空一字格。其内容采用5号楷体。 7.公式:独立的数学公式要居中排列,在各一级标题下在最右边按顺序标号,并用括弧括住,比如,第2节第5个公式标注为(2.5)。多行公式的各行应当按照第一行的第一个等号对齐,各行的开头应该是等号或其它运算符号。 第四部分:参考文献 参考文献是指论文在研究和写作中参考或引证的主要文献资料,以【参考文献】作为标题(小4号楷体加粗,单独一行居左顶格编排),文献等用5号楷体,列于论文的末尾。所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。 参考文献标注方式按《GB7714-87文后参考文献著录规则》进行。 文献是期刊、著作时,书写格式分别为: [1] 作者(甲,乙). 篇名. 杂志[J],年,卷(期):起始页(如P28.30). [2] 作者(甲,乙). 书名[M]. 地点:出版社,年. 附论文格式范例高一数学新教材教学策略初探【摘要】: 本文从分析新教材特点着手探索高一数学教学策略【关键词】:新教材;教学策略高一数学新教材,已于2001年秋季正式在我省施行,为把握新教材的知识结构、编排体系、编写意图、教学要求和教学特点,笔者认真阅读了教学大纲和教材,结合自己近期的教学实践,在此谈谈对新教材的认识和体会,不妥之处,敬请同行指正。1.新教材的特点分析1.1精选内容在保证基础知识教学、基本技能训练、基本能力培养的前提下,对传统的初等数学进一步精简其次要的、用处不大的、而且学生接受起来有一定困难的内容。如高一上学期中删减了幂函数、指数方程和对数方程等,同时降低了某些内容的要求,如反三角函数的相关内容等。1.2更新部分知识、表达方法及教学手段新增加了一些为了进一步学习打基础、有着广泛应用的、而且又是学生能够接受的新知识,如简易逻辑等;更新了传统内容的讲法和部分数学语言,更广泛地使用集合语言、逻辑联结词等来处理某些问题;更新了某些概念和数学符号,更新了教学手段和教学方法。如补集符号的更新、充许使用计算器等。2教学策略2.1重视基础,以本为本,落实“双基”《新教学大纲》确定教学内容本着"有用、基本、能接受"的原则,即精选那些在现代社会生活和生产中有着广泛应用的,为进一步学习必需的知识;在数学理论、数学方法、数学思想上都是最基本的内容;在程度和分量上是高中学生能够接受的知识,避免要求过高、分量过重的现象。2.2改变教学手段,注重形象思维的培养新教材更新了传统内容的讲法和部份数学语言,教材设计也更具形象化,因此在数学教学中,培养学生的形象思维能力显得非常重要。数学形象思维是数学思维的先导,在获得知识与解决数学问题的过程中,形象思维是形成表征(表象)的重要思维方式。在新教材中,它更进一步渗透于逻辑思维过程之中。如果没有形象思维的参与,逻辑思维就不能很好地展开和深入,也就不能使思维较好地求异和发散,更不适应新形势的要求。 【参考文献】:[1]人民教育出版社数学室编著.普通高中课程标准实验教科书•数学必修3.北京:人民教育出版社,2004,7[2]章晓军.解题要善于捕捉隐含条件.中学数学,2001,3
小小织女星
写作思路及要点:以生活中的数学为题,围绕这一主题结合生活中的数学事迹展开详细描写,接着表达自己的想法以及观点。
正文:
生活中处处都有数学,一个井盖、一个圆柱、一个圆形……我们可不能小看了这数学,虽然这些东西在日常生活中很常见,可数学的用处可大着呢!不信,咱们来瞧瞧吧!
有一次,上二年级的小表妹来我家玩。我很欢迎她,听说小表妹很聪明,于是我便想到考考她。我上网找到十个城市的天气预报给妹妹,说这十个城市的天气弄混了,麻烦你帮忙整理的既清楚又简洁,我是想看她会不会用统计图来整理这些城市的天气。
妹妹接过资料,笑着对我说:“没问题,包在我身上了!”几分钟的功夫,妹妹就把一张干净、整洁的城市天气预报的统计图给了我。我仔细看过后,笑了笑,摸摸妹妹的头,“真是长大了,一天比一天棒了!”妹妹客气地对我笑了笑,然后我们俩一起出去玩了。
生活中处处都有数学,只是有的人发现了,有人没发现;只要我们认真去找,认真对待,我相信就一定会发现数学的奥秘的。一旦你发现了数学的奥秘,就会知道其中的乐趣。
像中国的墨子、祖冲之、张衡、刘益、朱世杰……外国的阿基米德、高斯、艾萨克·牛顿、伯努利、欧拉……这些著名的数学家难道天生就有这样的神力吗?不,他们是靠自己的不懈努力换来的成绩,并不是生下来就具有特殊能力的。
上天对每个人都是公平的,只是有的人不珍惜机会罢了,所以我们要把握好机会,把握好数学,不要到最后才后悔莫及。生活中有很多数学都在等你去探索呢!快去看看吧!
初夏红豆冰
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。望采纳,O(∩_∩)O谢谢!!!!!
莫强求Jt
八岁的高斯发现了数学定理德国高斯(1777~1855) 是当代最杰出的天文学家、数学家,在物理的电磁学方面也有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们称呼他为“数学王子”。出生在一个贫穷的家庭,是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发地拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。小欧拉智改羊圈欧拉,瑞士人,是世界数学史上与高斯、阿基米德、牛顿齐名的四大著名数学家之一,被誉为“数学界的莎士比亚”,在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。事情是因为星星而引起的。当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到天幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?他向老师提出了心中的疑问,老师又一次被问住了。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
数学内在的逻辑性和抽象性对发展幼儿数理逻辑智慧更具有特殊的价值。幼儿园的数学 教育 就是利用数的这种特殊价值来促进幼儿 逻辑思维 的发展,同时培养幼儿对
小学数学论文浅谈估算教学的现状与改进措施大溪二小 徐再立摘 要:估算教学让我们觉得有很多困惑,如学生的"先算后估","估算速度慢于精确计算"以及"估算方法举棋不
也许,许多同学的父母都很重视考试。但是,我父母却不这样认为,好今天我们就来聊一聊关于分数的问题。就拿我的例子来说吧,有一次,我的数学考试成绩得了100分,我拿着
1神奇的纸洞 2一个偶然的发现 3 巧用假设法解决问题 4生活中处处是数学 5生活是个数学的大课堂 6清除“绊脚石” 7另辟蹊径,巧解题目 8数
1、从实际需求出发:比如说家人去买菜用哪种方式比较快捷到达目的地,又运用哪些方法可以省钱。这些实际的生活非常能够让孩子思考,孩子也容易理解,往往数学思维在不知不