• 回答数

    6

  • 浏览数

    90

独行欧洲
首页 > 学术期刊 > 行人目标检测领域的研究现状论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

我是中吃货

已采纳

(四)课题研究的目标课题研究的目标也就是课题最后要达到的具体目的,要解决哪些具体问题。相对于目的和指导思想而言,研究目标是比较具体的,不能笼统地讲,必须清楚地写出来。只有目标明确而具体,才能知道工作的具体方向是什么,才知道研究的重点是什么,思路就不会被各种因素所干扰。下面是《学科教学与素质教育》研究实验方案所写的课题研究目标:1、通过实验研究,总结出中小学各学科实施素质教育的特点和规律;2、提出在中小学学科教学中实施素质教育的意见;3、制定中小学各学科教育中实施素质教育的目标和评价方案;4、初步形成素质教育机制下的中小学学科教学基本理论;5、全面提高实验学校学生的素质,促进实验学校教育质量的大面积提高;6、促进实验学校教师素质的提高,造就高水平的科研队伍。确定课题研究目标时,一方面要考虑课题本身的要求,另一方面要考虑课题组实际的工作条件与工作水平。五、课题研究的基本内容我们有了课题的研究目标,就要根据目标来确定我们这个课题具体要研究的内容,相对研究目标来说,研究内容要更具体、明确。并且一个目标可能要通过几方面的研究内容来实现,他们不一定是一一对应的关系。大家在确定研究内容的时候,往往考虑的不是很具体,写出来的研究内容特别笼统、模糊,把研究的目的、意义当作研究内容,这对我们整个课题研究十分不利。因此,我们要学会把课题进行分解,一点一点地去做。这里给大家举一个例子:广东拾九五”重点课题《初中语文活动课研究和实验》的研究方案指出,本课题研究的中心是,如何科学有序、切实有效的开展初中语文活动课。具体内容包括下列三个方面。1、根据初中各年级学生的情况和语文教学要求,对初中各年级语文活动课对学生认知领域、情感领域和动作技能领域素质的发展进行详细的目标规定,从而建立初中语文活动类课程的目标体系。2、根据初中各年级语文活动课目标和语文学科的特点,安排初中各年级语文活动课的内容,内容的安排力求充实、精当、有序,并初步形成一个相对完整的活动课内容体系。3、根据初中各年级语文活动课目标内容和初中各年级学生的理特点,探索初中语文活动类课程的学习活动方式,确定活动类课程的教学时间、空间及程序,并在此基础上形成多种切实可行的可操作的语文活动教学模式。六、课题研究的步骤课题研究的步骤,也就是课题研究在时间和顺序上的安排。研究的步骤要充分考虑研究内容的相互关系和难易程度,一般情况下,都是从基础问题开始,分阶段进行,每个阶段从什么时间开始,至什么时间结束都要有规定。七、课题研究的方法教育研究的方法很多,包括历史研究法、调查研究法、实验研究法、比较研究法、理论研究法等。一个大的课题往往需要多种方法,小的课题可能主要是一种方法,但也要利用其它方法。我们在应用各种方法时,一定要严格按照方法的要求,不能不三不四,凭经验、常识去做。比如,我们要通过调查了解情况,我们如何制订调查表,如何进行分析,不是随随便便发张表,搞一些百分数、平均数就行了。八、课题研究的成果形式课题研究的成果形式包括报告、论文、专著、软件、课件等多种形式。课题不同,研究成果的内容、形式也不一样,但不管形式是什么,课题研究必须有成果,否则,就是这个课题就没有完成。九、课题研究的组织机构和人员分工在方案中,要写出课题组长、副组长、课题组成员以及分工。课题组组长就是本课题的负责人。一个课题组应该包括三方面的人,一是有权之士,二是有识之士,三是有志之士。有权了课题就可以得到更多的支持,有识了课题质量、水平就会更高,有志了可以不怕辛苦,踏踏实实踏实实去干。课题组的分工必须是要分得明确合理,争取让每个人了解自己工作和责任,不能吃大锅饭。但是在分工的基础上,也要注意全体人员的合作,大家共同研究,共同商讨,克服研究过程中的各种困难和问题。 第三部分开题报告的结构与写法开题报告主要包括以下几个方面:(一)课题名称(二)课题研究的目的、意义(三)国内外研究现状、水平和发展趋势(四)课题研究的理论依据(五)课题主要研究内容、方法(六)研究工作的步骤(七)课题参加人员的组成和专长(八)现有基础(九)经费估算(三)国内外研究现状、水平和发展趋势就是本课题有没有人研究,研究达到什么水平、存在什么不足以及正在向什么方向发展等。开题报告写这些内容一方面可以论证本课题研究的地位和价值,另一方面也说明课题研究人员对本课题研究是否有较好的把握。我们进行任何科学研究,必须对该问题的研究现状有清醒的了解,这在第一部分已经谈到。(五)课题研究的理论依据我们现在进行的课题基本上都是应用研究和发展研究,这就要求我们的研究必须有一些基本的理论依据来保证研究的科学性。比如:我们要进行活动课实验研究,我们就必须以课程理论、学习心理理论、教育心理学理论为研究试验的理论依据。我们进行教学模式创新实验,就必须以教学理论、教育实验理论等为理论依据。(七)课题参加人员的组成和专长主要看参加人员的整体素质与水平,尤其是课题负责人的水平怎么样。如果参加人员和负责人既没有理论又没有实践经验,这个课题主无法很好地完成,也就无法批准立项。(八)现有基础主要是人员基础和物质基矗很多课题对人员和设备方面要求是比较高的,如果基本的研究条件都没有,这个课题同样不能立项。(九)经费估算就是课题在哪些方面要用钱,用多少钱,怎么管理等。

254 评论

风中传音

人工智能行业主要上市公司:海康威视(002415)、科大讯飞(002230)、赛为智能(300044)、东杰智能(300486)、闻泰科技(600745)、中兴通讯(000063)、恒生电子(600570)等

本文核心数据:人工智能市场规模 各层次企业分布 企业技术分布 人工智能细分领域占比等

1、市场规模:中国人工智能行业呈现高速增长态势

人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,近年来,中国人工智能产业在政策与技术双重驱动下呈现高速增长态势。根据中国信通院数研中心测算,2020年中国人工智能产业规模为3031亿元人民币,同比增长15.1%。中国人工智能产业规模增速超过全球。

注:中国信通院的市场规模根据IDC数据测算,统计口径与IDC一致,即包括软件、硬件与服务市场。

2、竞争格局:中国人工智能企业主要分布在应用层 占比超过80%

——中国人工智能企业全产业链布局完善

我国作为全球人工智能领域发展较好的地区,无论是人工智能领域的基础层、技术层、应用层,还是人工智能的硬件产品、软件产品及服务,我国企业都有涉及。在国内,除去讯飞等垂直类企业,真正在人工智能有所长进的巨头依然是百度、阿里、腾讯这三家。

——中国人工智能企业主要分布在应用层,占比超过80%

据中国新一代人工智能发展战略研究院2021年5月发布的《中国新一代人工智能科技产业发展报告(2021)》数据,截至2020年底,中国人工智能企业布局侧重在应用层和技术层。其中,应用层人工智能企业数占比最高,达到84.05%;其次是技术层企业数,占比为13.65%;基础层企业数占比最低,为2.30%。应用层企业占比高说明中国的人工智能科技产业发展主要以应用需求为牵引。

3、技术分布:中国人工智能企业核心布局的技术主要为大数据和云计算

从人工智能企业核心技术分布看,大数据和云计算占比最高,达到41.13%;其次是硬件、机器学习和推荐、服务机器人,占比分别为7.64%、6.81%、5.64%;紧随其后,物联网、工业机器人、语音识别和自然语言处理、图形图像识别技术的占比依次为5.55%、5.47%、4.76%、4.72%。

4、细分领域:深度神经网络领域为中国AI研究热门

根据清华大学人工智能研究院、与中国工程院知识智能联合研究中心联合发布的《人工智能发展报告2011-2020》,2011-2020年十大AI研究热点分别为深度神经网络、特征抽取、图像分类、目标检测、语义分割、表示学习、生成对抗网络、语义网络、协同过滤和机器翻译。

更多行业相关数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》

347 评论

艾吃艾美

课题研究现状也叫“国内外相关研究现状综述”,即简述或综述别人在本研究领域或相关课题研究中做了什么,做得如何,有哪些问题解决了,哪些尚未解决,以便为自己开展课题研究提供一个背景和起点。也有利于自己课题找到突破口和创新处。如果说格式的话,基本上就是先分门别类地梳理一下相关研究及其成果,注意最好是条理化、分门别类,这本身就是一项研究。分类是最基础性的研究工作。然后对这些研究和成果进行评论,共同点、不同点、优点、缺点,然后做一个总结。大概就是如此。希望对你有用,祝你顺利啊!有问题可以继续探讨。。。

333 评论

吹吹再吹

怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

118 评论

yukisnowfox

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 0.3来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为0.5。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为0.5 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有0.2个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为0.5的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化45.3%的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是0.29,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

251 评论

windy幸福快降临

根据《中国人工智能发展报告2020》,过去10年,中国人工智能专利申请数量居世界首位,未来10年,中国将专注于强化学习、知识地图和智能机器人。昨天在苏州举行的中国人工智能产业年会上发布了这一数据。该报告称,过去10年,全球人工智能专利申请超过52万件。专利申请量38.9571万件,占全球的74.7%,居世界首位。与此同时,中国在10多个人工智能子领域的科研产出领先世界,包括自然语言处理、芯片技术和机器学习。在人机交互、知识工程、机器人技术、计算机图形学和计算理论等领域。

过去10年国际顶尖期刊和会议论文对人工智能领域的研究,该报告选取了过去10年人工智能研究的10个重点,分别是神经网络深度、特征提取、图像分类、目标检测、语义分割等。报告还总结了机器学习、自然语言处理和知识工程等关键人工智能领域的研究现状和趋势,并指出预先训练的语言模型在自然语言处理方面取得了重要进展。自ELMO、GPT、BERT等一系列预训练语言表示模型出现以来,预训练语言表示模型在大多数自然语言处理任务中表现出了比传统模型更好的效果,越来越受到人们的关注。这是最大的一个近年来在自然语言处理领域的突破。”

报告发现,中国在自然语言处理、芯片技术、机器学习、信息检索和挖掘等10多个人工智能领域的科研产出领先世界。多媒体和物联网领域的论文产出量超过美国,居世界第一。中国有高水平学者196人。德国排名第三,拥有欧洲最多的学者,而世界其他国家的学者不到100人。高级人工智能人才在中国主要位于京津冀地区、长江三角洲和珠江三角洲地区。

人工智能专利申请也是该报告关注的焦点。据统计,过去10年,全球人工智能专利申请数量为521,264项。中国专利申请量38.9571万件,占全球专利申请量的74.7%,居世界第一,是美国专利申请量第二的8.2倍。通过分析2020年人工智能技术的成熟度曲线和人工智能的发展现状,预测未来十年人工智能的重点方向包括强化学习、神经形态硬件、知识映射、智能机器人、可解释人工智能、数字伦理、以及知识引导的自然语言处理。

356 评论

相关问答

  • 论文检测领域

    我在写硕士论文时用过知网查阅资料,他们的数据库包括几乎全国的学术性期刊、硕博论文,因此,他们的检测数据库应该就是他们自身的存储数据库。供参考

    淡粉浅蓝 4人参与回答 2023-12-05
  • 汽车曲轴领域研究现状论文范文

    汽车维修新技术论文篇二 汽车发动机的维修技术分析 摘 要 作为汽车的心脏部位,发动机在汽车的正常运行和操作中其中至关重要的作用。因此,平时需要加强对发动机的

    小李飞刀xy 8人参与回答 2023-12-07
  • 医药领域的研究现状论文

    生物医药产业近年来引起世界各国的高度重视,我国也把生物医药产业作为重点发展的支柱性产业,从政策和规划上积极进行扶持。下面是我为大家整理的生物医药论文,供大家参考

    闪灯背后 2人参与回答 2023-12-09
  • 断层领域研究现状论文

    论文是一个汉语词语,拼音是lùn wén,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为

    catcat654321 5人参与回答 2023-12-10
  • 电磁兼容检测研究领域论文

    《安全与电磁兼容》

    尼古丁00144 5人参与回答 2023-12-09