• 回答数

    2

  • 浏览数

    102

祖国的砖。
首页 > 学术期刊 > 指数函数教学设计毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

小脸欠捏

已采纳

摘要随着科学技术的迅速发展,数学建模这个词会越来越多的出现在现代人的生产、工作和社会活动中。众所周知,建立数学模型是沟通摆在面前的实际问题与数学工具之间的一座必不可少的桥梁。本文就是运用了数学建模的有关知识解决了部分生活与生产问题。例如,本文中的第一类是解决自来水供应问题,第二类是数学专业学生选课问题,第三类是饮料厂的生产与检修计划问题,这些都是根据数学建模的知识解决的问题。不仅使问题得到了解决,还进一步优化了数学模型,使数学建模问题变得可实用性!关键词: 数学建模 Lingo软件 模型正文 第一类:自来水供应问题:齐齐哈尔市梅里斯区华丰大街周围共4个居民区:园丁一号,政府六号,华丰一号,英雄一号。这四个居民区的自来水供应分别由A、B、C三个自来水公司供应,四个居民区每天需要得到保证的基本生活用水量分别为30,70,10,10千吨,但由于水源紧张,三个自来水公司每天最多只能分别提供50,60,50千吨自来水。由于管道输送等问题,自来水公司从水库向各个居民区送水所需付出的饮水管理费不同(见表1),其他管理费用都是450元/千吨。根据公司规定,各居民区用户按照统一标准900元/千吨收费。此外,四个居民区都向公司申请了额外用水,分别为每天50,70,20,40千吨。该公司应如何分配用水,才能获利最多?饮水管理费(元/千吨) 园丁一号 政府六号 华丰一号 英雄一号A 160 130 220 170B 140 130 190 150C 190 200 230 /(注意:C自来水公司与丁之间没有输水管道)模型建立:决策变量为A、B、C三个自来水公司(i=1,2,3)分别向园丁一号,政府六号,华丰一号,英雄一号四个居民区(j=1,2,3,4)的供水量。设水库i向j区的日供水量为x(ij),由题知x34=0.MinZ=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件:x11+x12+x13+x14=50; x21+x22+x23+x24=60; x31+x32+x33=50; x11+x21+x31<=80; x1+x21+x31>=30; x12+x22+x32<=140; x12+x22+x32>=70; x13+x23+x33<=30; x13+x23+x33>=10; x14+x24<=50;x14+x24>=10; x(ij)>=0; 用lingo软件求解:Min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;x11+x12+x13+x14=50; x21+x22+x23+x24=60;x31+x32+x33=50; x11+x21+x31<=80; x11+x21+x31>=30; x12+x22+x32<=140;x12+x22+x32>=70;x13+x23+x33<=30; x13+x23+x33>=10;x14+x24<=50;x14+x24>=10;x34=0;x11>=0;x12>=0;x13>=0;x14>=0;x21>=0;x22>=0;x23>=0;x24>=0;x31>=0;x32>=0;x33>=0;运行结果:Global optimal solution found at iteration: 14 Objective value: 24400.00Variable Value Reduced Cost X11 0.000000 30.00000 X12 50.00000 0.000000 X13 0.000000 50.00000 X14 0.000000 20.00000 X21 0.000000 10.00000 X22 50.00000 0.000000 X23 0.000000 20.00000 X24 10.00000 0.000000 X31 40.00000 0.000000 X32 0.000000 10.00000 X33 10.00000 0.000000 X34 0.000000 0.000000 Row Slack or Surplus Dual Price 1 24400.00 -1.000000 2 0.000000 -130.0000 3 0.000000 -130.0000 4 0.000000 -190.0000 5 40.00000 0.000000 6 10.00000 0.000000 7 40.00000 0.000000 8 30.00000 0.000000 9 20.00000 0.000000 10 0.000000 -40.00000 11 40.00000 0.000000 12 0.000000 -20.00000 13 0.000000 0.000000 14 0.000000 0.000000 15 50.00000 0.000000 16 0.000000 0.000000 17 0.000000 0.000000 18 0.000000 0.000000 19 50.00000 0.000000 20 0.000000 0.000000 21 10.00000 0.000000 22 40.00000 0.000000 23 0.000000 0.000000 24 10.00000 0.000000灵敏度分析:Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X11 160.0000 0.0 0.0 X12 130.0000 0.0 0.0 X13 220.0000 0.0 0.0 X14 170.0000 0.0 0.0 X21 140.0000 0.0 0.0 X22 130.0000 0.0 0.0 X23 190.0000 0.0 0.0 X24 150.0000 0.0 0.0 X31 190.0000 0.0 0.0 X32 200.0000 0.0 0.0 X33 230.0000 0.0 0.0 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 50.00000 0.0 0.0 3 60.00000 0.0 0.0 4 50.00000 0.0 0.0 5 80.00000 0.0 0.0 6 30.00000 0.0 0.0 7 140.0000 0.0 0.0 8 70.00000 0.0 0.0 9 30.00000 0.0 0.0 10 10.00000 0.0 0.0 11 50.00000 0.0 0.0 12 10.00000 0.0 0.0 14 0.0 0.0 0.0 15 0.0 0.0 0.0 16 0.0 0.1084396E+17 0.1084396E+17 17 0.0 0.1084396E+17 0.1084396E+17 18 0.0 0.0 0.0 19 0.0 0.0 0.0 20 0.0 0.0 0.0 21 0.0 0.0 0.0 22 0.0 0.0 0.0 23 0.0 0.0 0.0 24 0.0 0.0 0.0 第二类:数学专业学生选课问题 学校规定,数学专业的学生毕业时必须至少学习过两门数学课、一门计算机课、一门运筹学课。这些课程的编号、名称、所属类别要求如下表:课程编号 课程名称 所属类别 先修课要求1 微积分 数学 2 数学结构 数学;计算机 计算机编程3 解析几何 数学 4 计算机模拟 计算机;运筹学 计算机编程5 计算机编程 计算机 6 数学实验 运筹学;计算机 微积分;线性代数模型的建立与求解:用xi=1表示选课表中的六门课程(xi=0表示不选,i=1,2…,6)。问题的目标为选课的课程数最少,即:min=x1+x2+x3+x4+x5+x6;约束条件为:x1+x2+x3>=2;x2+x4+x5+x6>=1;x4+x6>=1;x4+x2-2*x5<=0;x6-x1<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6);运行结果:Global optimal solution found at iteration: 0 Objective value: 3.000000Variable Value Reduced Cost X1 1.000000 1.000000 X2 0.000000 1.000000 X3 1.000000 1.000000 X4 0.000000 1.000000 X5 0.000000 1.000000 X6 1.000000 1.000000 Row Slack or Surplus Dual Price 1 3.000000 -1.000000 2 0.000000 0.000000 3 0.000000 0.000000 4 0.000000 0.000000 5 0.000000 0.000000 6 0.000000 0.000000第三类:饮料厂的生产与检修计划 某饮料厂生产一种饮料用以满足市场需要。该厂销售科根据市场预测,已经确定了未来四周该饮料的需求量。计划科根据本厂实际情况给出了未来四周的生产能力和生产成本,如下图。每周当饮料满足需求后有剩余时,要支出存贮费,为每周每千箱饮料0.2千元。如果工厂必须在未来四周的某一周中安排一次设备检修,检修将占用当周15千箱的生产能力,但会使检修以后每周的生产能力提高5千箱,则检修应该放在哪一周,在满足每周市场需求的条件下,使四周的总费用(生产成本与存贮费)最小?周次 需求量(千箱) 生产能力(千箱) 成本(千元/千箱)1 15 30 5.02 25 40 5.13 35 45 5.44 25 20 5.5合计 100 135 模型建立:未来四周饮料的生产量分别记作x1,x2,x3,x4;记第1,2,3周末的库存量分别为y1,y2,y3;用wt=1表示检修安排在第t周(t=1,2,3,4)。输入形式:min=5.0*x1+5.1*x2+5.4*x3+5.5*x4+0.2*(y1+y2+y3);x1-y1=15;x2+y1-y2=25;x3+y2-y3=35;x4+y3=25;x1+15*w1<=30;x2+15*w2-5*w1<=40;x3+15*w3-5*w2-5*w1<=45;x4+15*w4-5*(w1+w2+w3)<=20;w1+w2+w3+w4=1;x1>=0;x2>=0;x3>=0;x4>=0;y1>=0;y2>=0;y3>=0;@bin(w1);@bin(w2);@bin(w3);@bin(w4);运行结果:Global optimal solution found at iteration: 0 Objective value: 527.0000Variable Value Reduced Cost X1 15.00000 0.000000 X2 45.00000 0.000000 X3 15.00000 0.000000 X4 25.00000 0.000000 Y1 0.000000 0.000000 Y2 20.00000 0.000000 Y3 0.000000 0.1000000 W1 1.000000 -0.5000000 W2 0.000000 1.500000 W3 0.000000 0.000000 W4 0.000000 0.000000 Row Slack or Surplus Dual Price 1 527.0000 -1.000000 2 0.000000 -5.000000 3 0.000000 -5.200000 4 0.000000 -5.400000 5 0.000000 -5.500000 6 0.000000 0.000000 7 0.000000 0.1000000 8 35.00000 0.000000 9 0.000000 0.000000 10 0.000000 0.000000 11 15.00000 0.000000 12 45.00000 0.000000 13 15.00000 0.000000 14 25.00000 0.000000 15 0.000000 0.000000 16 20.00000 0.000000 17 0.000000 0.000000参考文献【1】 杨启帆,边馥萍。数学建模。浙江大学出版社,1990【2】 谭永基,数学模型,复旦大学出版社,1997【3】 姜启源,数学模型(第二版)。高等教育出版社,1993【4】 姜启源,数学模型(第三版)。高等教育出版社2003

105 评论

枫叶e宝宝

摘要:在深入学习领会新课程理念的基础上,本文通过三个教学案例论述了在进行指数函数教学设计时,如何改进新课引入、多媒体使用和指数函数性质发现过程以及相应的教学效果。 关键词:指数函数;教学设计;教学案例;多媒体;有效教学 指数函数是高中数学的重点内容之一,从教学要求看,一是理解指数函数的定义;二是掌握指数函数的图像与性质。下面是笔者在公开教学中对指数函数教学设计的三处改进。 案例一:新课引入的改进 (一)原始设计 1.复习旧知: ②函数y=x的定义域是 2.引入新课:师问:函数y=()与函数y=x,从形式上看有什么不同?生答:从形式上看,前者指数是自变量,后者底数是自变量。(引入课题) (二)改进设计 1.创设情境:有人说,将一张白纸对折50次以后,其厚度超过地球到月球的距离,你认为可能吗?设白纸每张厚度为0.01mm,已知地球到月球的距离约为380000千米。 对折的层数y与对折次数x的函数关系式是什么?设纸的原面积为1,对折后纸的面积z与对折次数x又有什么关系?(y=2x,z=()x) 2.提出问题:师问:能发现y=2x,z=()x的共同点吗? 学生思考片刻,教师提示:从形式上,有什么共同点?并用红粉笔标出指数x。 生答:指数x是自变量,底数是大于0且不等于1的常数。(引入课题) (三)教学反思 凯洛夫的“五环节”教学理论:“复习旧课—导入新课—讲授新课—巩固—作业” 目前还深深地影响着我们的教学。但如果总是这样一成不变,就显得呆板与程式化。我们现在上课总喜欢说:“今天我们学习……”。教师不说,学生不问,教师怎么讲,学生就怎么学。我们知道,数学来源于生活,又应用于实践。在原始设计中,先复习与新授知识相关的内容,然后再从实际引入新课,与教材编排相一致,这样就数学讲数学,显得枯燥无味,很难调动学生的学习兴趣。为此,从学生感兴趣的一个生活实例出发,引起学生注意与争议,教师再创设实际问题情境,就激发了学生的学习兴趣,牢牢地吸引了学生的注意力,增强了学生的求知欲望,强化了学生内在的学习需求,巧妙地导入了新课。 案例二:多媒体使用的改进 (一)原始设计 1.电脑作图:教师用多媒体演示y=2x、y=()x的作图过程。 2.观察猜想:教师引导学生观察y=2x、y=()x的图像,猜想y=3x的图像形状。 3.电脑验证:教师用几何画板做出y=3x的图像,验证猜想。 4.归纳猜想:由特殊到一般,给出指数函数的图像分为01两类,并用多媒体演示它们的图像特征和性质。 (二)改进设计 1.学生作图:在教师的指导下学生分组后用几何画板作y=2x、y=()x的图像。然后,让学生在电脑上作y=3x,y=5x y=10x,y=0.2x,y=0.7x等函数的图像,并对图像形状的变化加以观察与讨论。 2.猜想形状:让学生猜想函数y=8x,y=0.3x的图像形状,师生讨论,并列出有关观察结论。 3.分组探究1:一般地指数函数的图像大致有几类(几种走势)? 4.分组探究2:分别满足什么条件的指数函数图像大致是图1、图2? 5.电脑验证:用几何画板作y=ax(a>0且a≠1)图像,任意改变a的值,展示底变化对图像的影响。 (三)教学反思 原始设计,多媒体演示放在猜想之后,仅仅起了一个验证的作用,体现不了计算机辅助教学的目的,有点画蛇添足,成了一种花架子。 改进之后,按照“动手操作—创设情境—观察猜想—验证证明”的思路设计,首先电脑作图,为学生观察、交流创设情境;然后,引导学生深入细致地观察图像,学生在相互争论、研讨的过程中进行民主交流,倾听他人意见,分享研究成果,猜想出图像分两种情形;最后,再用多媒体验证猜想。这样设计符合学生的认知规律和思维习惯,激发了学生的求知欲,增强了学习的自信心,张扬了学生的个性,顺利地解决了这一教学难点。 我们在使用计算机辅助教学时,千万不要忘记“辅助”二字,辅助在不用多媒体教学时的难点处,辅助在点子上,而不能为了用多媒体而用多媒体案例三:指数函数的性质发现过程的改进 (一)原始设计 1.师生作图:教师作y=2x的图像,以作示范。然后学生模仿作y=()x的图像,以巩固作图方法。 2.电脑演示:教师用多媒体演示y=2x、y=()x的作图过程。 3.观察特征:教师引导学生观察上述两个图像的特征,并推广到一般情形。 4.归纳性质:根据图像特征,写出它们的性质。 (二)改进设计 在前面学生分组用多媒体做出y=2x,y=()x,y=3x,y=5x,y=10x,y=0.2x,y=0.7x等函数图像的基础上,教师引导学生观察、讨论、归纳得出性质。 1.自主观察:对一般的指数函数,图像有哪些特征? 2.分组讨论:学生分组讨论后,展示讨论的结果。除得到图像的一般特征,更值得一提的是,有的学生还说出了函数y=2x与y=()x的图像关于y轴对称等特征。 3.归纳性质:根据图像特征,写出它们的性质。 4.作示意图:根据指数函数的性质,教师让学生作出y=8x,y=0.6x等函数图像的示意图。 师:观察与猜想是一种感性认识,并不表示结论一定正确,还需要进行理性证明…… (三)教学反思 新课程标准指出:要改变课程实施过于强调接受学习、死记硬背、机械训练的现象,倡导主动学习、乐于探究,勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力及交流合作的能力。因此,教师要把学习过程中的发现、探究、研究等认知活动突显出来,使学习过程更多地成为学生发现问题、研究问题及解决问题的过程。 上述两种设计都注重让学生从事有意义的数学活动,都涉及了学生的探索活动和经常使用的研究方法,如从特殊到一般,再由一般到特殊,类比、联想、猜想等。 原始设计在实际教学中,活动缺乏内在联系,加上教师的束缚,活动单一,学生得出图像分两类显得较为生硬,接着研究的一般情形又似乎来得“突然”,从特例到一般情形并未起到搭桥引渡的作用,形成了一个认知难点。这样的设计没有真正发挥学生的主体作用,实际上还是教师主导着课堂,牵着学生走,还是在教知识、教教材,是一种主导性教学模式。 改进后,改变了教学方法,教师放弃了全程主导,把学习的主动权交给了学生,由他们自己去观察、去发现,在学生交流、研讨、互动的过程中,学生观察深入,思维活跃,富有创造性。教师则以学生伙伴的角色参与学生的认知学习,在与学生的互动交流中指导学生,并积极地关注、倾听学生的交流。这样设计符合学生的认知规律和思维习惯,为学生营造了安全的心理环境,学生非常顺利地学习了指数函数的性质,而且学生觉得这些思想方法是非常自然的,可以学到手且以后能用得上,为今后的学习作了必要的铺垫,这是一种典型的指导性教学模式。 学生是学习的主人,自主学习是他们的天然权利,任何硬性灌输和强制训练都是侵犯学生学习主权的行为。

98 评论

相关问答

  • 小学教育本科函数毕业论文

    建议您去看下(创新教育研究),学习参考下

    特力小屋 3人参与回答 2023-12-10
  • 小学教学设计数学期刊

    《小学数学教育》不是核心期刊,期刊级别: 省级期刊 小学数学教育 是由辽宁省教育厅主管、中国教育学会小学数学教学专业委员会主办的小学数学期刊。 《小学数学教育》

    木本色计 7人参与回答 2023-12-11
  • 指数函数论文答辩怎么答

    论文数据编的答辩直接跟老师明说,不要等到被老师查出来,这样会更加尴尬。 看你编的数据是原始数据还是什么,不管是编的还是调查得来的,都要对文章的数据进行推算,文章

    燕子060207 3人参与回答 2023-12-06
  • 大学数学教学设计论文

    大学数学论文范文 导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下

    卷毛咕咕 2人参与回答 2023-12-06
  • 函数数学论文范文

    随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。 一、高等数学在地方高等职业教育中遇到的问题及

    于海丽888 2人参与回答 2023-12-08