奔兔2008
化学是重要的基础科学之一,是一门以实验为基础的学科,在与物理学、生物学、地理学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。下文是我为大家搜集整理的关于大学化学毕业论文的内容,欢迎大家阅读参考! 大学化学毕业论文篇1 浅议化学氧化改性对碳毡空气阴极表面特征的影响 微生物燃料电池(MFC)是一种可以将废水中有机物的化学能转化为电能同时处理废水的新型电化学装置。但输出功率低、运行费用高且性能不稳定等严重制约了MFC的实际应用。影响MFC性能的主要因素有产电微生物、阴极催化剂、电极材料、反应器构型及运行参数等。其中,阴极是影响MFC性能及运行成本的重要因素。目前,有学者通过筛选电极材料及对电极材料进行改性来提高MFC性能和降低成本,效果较为显着。因此,笔者采用HNO3氧化碳毡,制作改性碳毡空气阴极,研究化学氧化改性对碳毡空气阴极表面特征的影响;并通过循环伏安测试,考察改性后碳毡阴极的稳定性。 1材料与方法 1.1试验装置及材料 采用连续流运行方式,试验装置主体是由有机玻璃制成的圆柱体,中间阳极室有效容积为36mL(内径为2cm,高为11.5cm),为确保阳极室的厌氧环境,用密封柱密封。阴极在阳极室外侧壁围绕。装置总容积为3.92L,密封盖上有阳极孔、阴极孔及检测孔,以便用铜导线、鳄鱼夹来连接外电路,外接1000Ω电阻作为负载。进水口设计在底部中央,制备成无膜上升流式反应器。阳极是直径为1cm的碳棒,阴极是厚度为3cm的碳毡,输出电压由万用表采集。 1.2原水水质及运行参数 垃圾渗滤液取自沈阳市老虎冲垃圾填埋场的集水井,其水质如表1所示。接种微生物为取自UASB反应器中的厌氧颗粒污泥,接种量为25mL。启动期的进水流量控制在30mL/h,COD约为500mg/L。稳定运行后进水流量逐步提升到90mL/h,COD提升到1500mg/L。 装置在32℃下恒温运行。MFC接种厌氧污泥后,先用COD为1000mg/L的垃圾渗滤液驯化一个周期,使阳极的产电微生物成功挂膜,MFC运行稳定后,再以COD为1500mg/L的垃圾渗滤液作为阳极进水。 1.3改性碳毡空气阴极的制备 阴极预处理:将碳毡剪成所需尺寸,然后浸泡在1mol/L的盐酸溶液中,目的是去除碳毡中的杂质离子,24h后取出,用去离子水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。 碳毡改性:将预处理过的碳毡浸入65%~68%的浓硝酸中,用水浴加热至75℃,处理不同时间后取出并用蒸馏水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。 催化剂吸附:将经改性后的碳毡放入Fe/C催化剂溶液(硝酸铁浓度为0.25mol/L,活性炭粉为1g)中,于磁力搅拌器上搅拌30min,然后取出碳毡放入105℃烘箱中烘干。 1.4分析项目和方法 外电阻R通过可调电阻箱控制,电压由万用表直接读取,功率密度P通过公式P=U2/RV计算得到,其中U为电池电压,V为阳极室体积。 表观内阻采用稳态放电法测定。 循环伏安测试以饱和甘汞电极作为参比电极,采用传统三电极体系,电化学工作站为EC705型。 电极电导率采用伏特计测定,COD采用快速密闭消解法测定,NH+4-N采用纳氏试剂光度法测定。 2结果与讨论 2.1改性时间对催化剂担载量的影响 电极表面催化剂担载量是影响电极性能的直接因素,而化学改性将影响电极吸附催化剂的担载量(如表2所示)。碳毡经过HNO3化学氧化处理不同时间后,其质量均出现一定程度的减少,且随着处理时间的增加,单位质量碳毡减少量也逐步增加,同时,单位质量碳毡所吸附催化剂的量也增加。这是由于HNO3的氧化作用使碳毡结构发生了变化,表面沟壑加深加密,粗糙度和表面积增加。同时碳毡表面的H+易被催化剂Fe3+取代,也有利于阴极催化剂的吸附。 2.2化学改性时间对电导率的影响 电极电导率是表征电极性能的重要参数之一。考察了碳毡空气阴极化学改性时间对其电导率的影响, 经改性后碳毡空气阴极的电导率明显提高,且随着处理时间的增加,电导率升高,当化学改性时间达到6h后,电导率趋于稳定。 这是因为碳毡具有石墨层状结构,层与层之间主要是以范德华力相结合,故层间较易引入其他分子、原子或离子而形成层间化合物。应用HNO3处理碳毡时,HNO3分子嵌入层间,同时吸引石墨电子,使其内部空穴增多,因此大大提高了碳毡的电导率。当碳毡层间嵌入的HNO3分子达到饱和时,将不再影响碳毡的电导率。 2.3改性时间对MFC电化学性能的影响 2.3.1对产电性能的影响 分别选取经HNO3氧化0、2、4、6、8、10h的碳毡制备碳毡空气阴极,并以石墨棒为阳极,垃圾渗滤液为燃料构建MFC,进行产电试验。极化曲线斜率和功率密度是表征MFC产电性能的两个重要参数,因此,通过测定输出电压和电流等参数,分别得到极化曲线和功率密度曲线。整个试验过程保持进水流量为120mL/h,反应温度为32℃。经HNO3改性的碳毡空气阴极MFC的极化都经历了活化极化、欧姆极化和浓度极化三个阶段。随着HNO3改性时间的延长,活化极化、欧姆极化和浓度极化损耗逐渐减小,电池的极化曲线斜率逐渐减小,即表观内阻逐渐降低;当改性时间为6h时,极化曲线斜率达到最小,表明此时表观内阻最小(358Ω)。之后,随改性时间的增加,极化曲线斜率增大,即表观内阻增大。 随着处理时间的增加,电池的功率密度同样经历了一个先增高再降低的过程,与图2的规律基本一致。其中当处理时间为6h时,电池的产电性能最好,最大功率密度达到6265.67mW/m3,较未经HNO3处理的MFC的最大功率密度(1838.46mW/m3)增大了2.4倍。由此可知,通过HNO3化学氧化改性碳毡空气阴极是改善MFC产电性能的有效方式之一。 2.3.2对CV曲线的影响 循环伏安法(CV)是表征MFC放电容量的重要方法之一。化学改性碳毡空气阴极MFC的CV曲线如图4所示。其中,扫描速度为50mV/s,扫描范围为-1~1V。扫描曲线以下的积分面积代表了电池的放电容量。由此可知,随着处理时间的增加,放电容量先增加后减小,化学氧化时间为6h时,构建的MFC放电容量最大,即MFC性能最好。综上所述,HNO3化学氧化碳毡空气阴极的最佳时间为6h。 2.4MFC的产电除污稳定性 2.4.1产电性能稳定性 对经HNO3化学氧化处理6h的碳毡空气阴极MFC进行了CV测试,共进行了21次循环扫描,结果表明:随着循环次数的增加,曲线形状几乎没有改变,第1、6、11、16、21次的循环伏安曲线基本重合,面积近乎恒定,即放电容量几乎没有变化,说明电池性能比较稳定,能够长期稳定运行。 在其他条件不变的情况下,采用经HNO3氧化6h的碳毡作为阴极,保持进水流量为120mL/h,外接1000Ω电阻持续运行14d,每天记录输出电压。 在最初的3d内,输出电压从62mV增加到483mV,第4天达到最大为492mV,接下来的一周则稳定在470mV左右。随着运行时间的增加,电压略有下降,这可能是阳极室溶液的不断流动,冲刷阳极,带出一定量产电菌同时增加了电池的内阻所致,但总体上电池的运行比较稳定。 2.4.2除污性能稳定性 采用经HNO3化学氧化6h的碳毡作为阴极、石墨棒作为阳极、外接1000Ω电阻的MFC,以连续流方式处理垃圾渗滤液。试验过程中原水COD为(2376±200)mg/L,NH+4-N为(151±10)mg/L,保持进水流量为120mL/h、温度为32℃,反应初期(1~5d),出水COD浓度急剧下降,之后出水COD浓度逐渐趋于稳定。 COD由初始的(2376±200)mg/L降到(238±15)mg/L,去除率达到89.9%~91.2%,高于谢珊等采用两瓶型MFC处理垃圾渗滤液对COD的去除率(78.3%)。而氨氮则由初始的(151±10)mg/L降到(86±5)mg/L,去除率达到39.3%~46.8%。去除的氨氮中部分以NH+4形式随水流进入阴极室,在阴极室扩散到空气中或转化为其他形式的氮,部分在阳极室作为电子供体被氧化。He等的研究也证实了氨氮可以作为MFC的燃料。 3结论 ①碳毡空气阴极吸附的催化剂量随着HNO3化学氧化碳毡时间的增加而增加,但是过量的催化剂不但不能促进反应,反而会增加电池内阻从而降低电池产电性能。碳毡空气阴极电导率随着HNO3化学氧化碳毡时间的增加而增加,并逐渐趋于稳定。 ②随着HNO3化学氧化碳毡时间的增加,碳毡空气阴极MFC的功率密度、放电容量呈现先升高后降低的趋势,而极化曲线斜率呈现先降低后升高的趋势。 ③HNO3化学氧化碳毡的最佳时间为6h。阴极改性6h后电池产电性能较稳定,最大功率密度比未改性增大2.4倍,达到了6265.67mW/m3,内阻降低到358Ω。 ④阴极改性6h后的MFC处理垃圾渗滤液的性能稳定。当进水COD为(2376±200)mg/L、NH+4-N为(151±10)mg/L时,对两者的去除率分别为(89.9%~91.2%)和(39.3%~46.8%)。 参考文献: [1]布鲁斯·洛根。微生物燃料电池[M].北京:化学工业出版社,2009. [2]FomeroJJ,RosenbaumM,CottaMA,etal.Microbialfuelcellperformancewithapressurizedcathodechamber[J].EnvironSciTechnol,2008,42(22):8578-8584. [3]李明,邵林广,梁鹏,等。集电方式对填料型微生物燃料电池性能的影响[J].中国给水排水,2013,29(9):24-28. 大学化学毕业论文篇2 浅谈化学分子力学对建筑建材选用的影响 引言 化学的应用给人类文明带来了翻天覆地的变化,在建筑领域,基于化学基础上的新型建筑建材的开发和利用提高了建筑的质量及建筑的安全性、稳定性、美观性等,是现代建筑研究的重要话题。此外,随着地球资源的日益紧张,环境污染的日益严峻,现代建材的研究和应用更为人们所重视,基于化学分子力学对建筑建材的选择和应用途径也日趋广泛。 1 建筑建材的选择和应用 1.1 现代建筑建材选择和应用的现状 伴随着人类文明的发展,建筑建材的生产工艺日益改进,生产技术的现代化,实现了建筑建材生产的智能化、自动化,各类建筑材料在科技发展的影响下不断优化。例如,混凝土的应用,它不仅是一种建筑材料,更具有装饰等作用。如利用混凝土砌块装饰建筑物墙壁,不但具有一定的美观性,还具有保温、隔热等效果。在高分子化学建材应用上,国外的发展要优于国内,例如塑料地板、高分子防水卷材等高分子化学建材最早出现与国际市场,被一些发达国家广泛应用。当前,建筑建材的选择和应用趋于高科技、多功能化,人们对建筑建材的性能、装饰效果、环保作用等有了更高要求。例如,涂料的选择,功能多、污染小、性能高、装饰效果强的材料更受欢迎。总之,人们对建筑建材的选择已由传统的实用性,转向了性价比高、性能好、低碳环保、功能多等多元方向。 1.2 新型化学建筑材料 新型化学建筑建材能赋予建筑新功能,在节约能源、优化环境等方面也有突出表现。例如建筑物墙体,可选择非粘土砖、建筑墙体板材、钢结构、玻璃结构等,其性能明显优于传统墙体。如玻璃结构,透光性好、装饰性强,给人以时尚、美观、大气之感。同时,新型化学建筑建材的多样性,使其具备更广泛的功能。例如塑料,新型塑料门窗,不仅美观、轻便、易安装,还具有很好的隔热性、耐腐性等; 又如新型的塑料管材,不但克服可传统管材的易腐蚀、易生锈、易老化等缺点,还具质轻、易安装、无污染等特点,极适合现代建筑环境; 再如塑料地板,节省原料,运输、施工方便,能带给人更好的舒适,具有良好的装饰效果好,是现代建筑建材的“新宠”。此外,混凝土、涂料等,在化学发展的影响下也具有更多、更广泛的用途,例如涂料的防水、防火、防毒、杀虫、隔音、保温等作用。 1.3 建筑建材的选择和应用原则 建筑建材的选择首先要满足应用需求,确保建筑建材选择的应用性能,确保其应用方便、应用安全和应用效果。其次,考虑建筑建材的美观性,建筑不是把好的东西堆积起来,而是一种艺术的创造与实践。 再次,充分考虑建筑建材的性价比,确保建筑工程的综合效益。在选择建筑建材时,先对建筑建材的特点、性能进行充分的了解,结合建筑需求,科学的选择适当的建筑建材。再对建筑建材的使用环境、使用目标进行综合的分析和研究,确保建筑建材应用的效果和性能,提高建筑物的功能性、美观性。最后,要全面认知建筑建材的应用工艺,确保建筑建材性能的发挥。例如混凝土,不但要了解各种混凝土的特点、配置比例等,还要重视其混合工艺,确保混凝土能到达理想的建筑效果。因此,建筑建材的选择是需要非常慎重的,而且需要遵循必要的应用原则。 2 化学分子力学对建筑建材的选择和应用的影响 新型建筑建材种类繁多、功能齐全。例如涂料,有有机水性涂料、溶剂类涂料等,在应用上也有较大区别。新型涂料应用化学知识,使涂料具有低污染、高性能、隔热、防火等多种功能,在材料选择时,要充分考虑建筑建材的应用目的,以达到工程施工的最大效益。又如保温隔热材料,现在常用的有玻璃棉、泡沫塑料等,这些材料的选择和应用与化学分子力学息息相关。以混凝土为例,要选择高性能的混凝土,首先,要了解混凝土的特点,它是一种由水泥、砂石、水、胶凝材料等按一定比例混合而成的复合材料。在材料的选择与应用中,必须认清其复合材料性质和各种混合比例,同时掌握混凝土的搅拌、成型、养护等等。 其次,在混凝土基本特点基础上,科学认知混凝土的集中搅拌特点,科学搭配各种材料比例,确保建筑建材的工作性、效益性和性价比。再次,在实践中结合理论科学的进行建筑建材的选择和应用。如通常情况下,建筑中会使用硅酸盐水泥,在该类建筑建材的选择上,不能单方面的考虑某一方面,要综合考虑,全面了解、可选选择。例如,在配置C40 以下的流态混泥土时,选择 42. 5Mpa 普硅水泥就不太合适,应结合应用需求,选择 32. 5Mpa 普硅水泥,避免选择的盲目性带来施工的不便。 此外,混凝土的选择要科学的利用化学知识,如相同标号的混凝土,要选择强度系数大,确保混凝土的耐久性; 相同强度的混凝土,则要选择需水量小的,降低水泥用量,确保水灰比例的科学性。同时,注重季节、气候等对于建筑建材化学性能的影响,如在混凝土配置中选择水泥,如在冬季施工则易采用 R 型硅酸盐水泥,搭配合适的掺料、外加剂等,确保混凝土性能。总之,化学丰富了现代建筑建材市场,为建筑提供了更多的选材机遇,而新型的建筑建材的使用一定要避开盲目性、跟风性,应在建筑目的的指导下,结合建筑建材性能,利用化学分子力学等知识,科学的、适当的对其进行选择和应用,以提高建筑建材的应用效果和应用价值。化学的分子力学,在建筑建材中应用非常广泛,基于建筑建材的化学分子力学应用,可以将建材的使用效率和使用效果做到最佳。总之,要充分利用化学分子力学的原理,在建筑建材中实现广泛的推广性使用,逐步加强对于化学原理的实际应用,从而达到推动行业发展的目的。 3 结语 高科技带来了建筑建材的高性能、多功能及轻便、美观等等。如玻璃材料钢化、夹丝、夹层等工艺不但提高了玻璃的安全性、抗压性,还对玻璃的隔音性、保温性等有很大的优化作用。随着化学工业的发展,越多的不可能变为可能,玻璃墙、塑料地板等,不断的丰富人类的建筑需求,提升建筑品味,使城市建设的风景更加多姿多彩。 参考文献 [1]辉宝琨。压力输送式预拌特种干混砂浆生产工艺选择[J].广东建材,2013( 9) . [2]崔东霞,费治华,姚海婷等,粉煤灰与化学外加剂对高性能混凝土开裂性能的影响[J].混凝土与水泥制品,2011( 4) . 猜你喜欢: 1. 大学毕业论文范文化学 2. 化学毕业论文精选范文 3. 大学化学论文范文 4. 化学毕业论文范文参考 5. 化学本科毕业论文范文
我想文文静静
绿色高性能混凝土建筑材料可持续发展的设想 多年来,关于混凝土材料的研究和对其发展方向的制定,过于偏重于使其达到某种或综合的优良性能这一基本原则上,而对其耐久性重视程度不够。90 年代初高性能混凝土概念提出后,促使人们加强了对混凝土材料的施工性和耐久性的研究,而绿色高性能混凝土则是将单纯的材料性能的获得与建筑材料的可持续发展综合考虑时的必然方向。1 绿色高性能混凝土 高性能混凝土应该具有下列某些或多项优良性能: (1) 优良的施工性:能在正常施工条件下保证混凝土结构的密实性和均匀性,并尽量降低振动噪音和振实能耗; (2) 强度高:尽量减少肥梁胖柱,并要考虑到建筑的美学效果和结构挠度以及功能等方面的要求; (3)耐久性优良:如抗冻性、抗渗性、抗冲击性、抗水砂冲刷性等; (4) 具有某些特殊功能:如超早强、低脆性、高耐磨性、吸声、自呼吸性等。尽管在开发应用高性能混凝土的过程中,一般都要使用高性能外加剂和性能优良的掺合料,在一定程度上可以起到节约水泥从而节约资源和能源、保护环境的作用,但高性能混凝土的提出者及研究开发者都很少从环境保护、节约资源和能源的高度来认识这一问题,过分强调在任何工程中都使用高强混凝土,无凝是对宝贵而有限的地球资源和能源的浪费。 最早提出绿色高性能混凝土概念的是中国工程院院士吴中伟教授。简要地说,符合以下条件的高性能混凝土才真正能称得上是绿色高性能混凝土: (1) 所使用的水泥必须为绿色水泥,砂石料的开采应以十分有序且不过分破坏环境为前提; (2) 最大限量地节约水泥用量,从而减少水泥生产中的“副产品”———CO2 、SO2 和NOx 等气体,以保护环境; (3) 更多地掺加经加工处理的工农业废渣,如磨细矿渣、优质粉煤灰、硅灰和稻壳灰等作为活性掺合料,以节约水泥保护环境,并改善混凝土耐久性; (4) 大量应用以工业废液,尤其是黑色纸浆废液为原料改性制造的减水剂,以及在此基础上研制的其它复合外加剂,帮助其它工业消化处理难以处治的液体排放物; (5) 集中搅拌混凝土,消除现场搅拌混凝土所产生的废料、粉尘和废水,并加强对废料、废水的循环使用; (6) 发挥高性能混凝土的优势,通过提高强度,减小结构截面积或结构体积,减少混凝土用量,从而节约水泥和砂、石的用量;通过改善施工性能来减小浇筑密实能耗,降低噪音;通过大幅度提高混凝土耐久性,延长结构物的使用寿命,进一步节约维修和重建费用,减少对自然资源无节制的使用; (7) 对大量拆除废弃的混凝土进行循环利用,发展再生混凝土。2 绿色高性能混凝土的原材料 尽管绿色高性能混凝土是一种相对节能的建筑材料,但随着世界水泥年产量和混凝土浇筑量的不断增加,它对资源、能源和环境所产生的影响是非常惊人的。据估算,生产1t 水泥熟料所排放的CO2 约为1t ,同时还要排放SO2 、NOx 等有害气体,CO2 的大量排放直接导致“温室效应”,而SO2 、NOx 等气体的排放则会引起“酸雨”现象,由于收尘设施不佳,水泥生产还排放出大量粉尘,水泥厂一直被看作环境污染源;水泥工业也是耗煤、耗电大户,水泥的大量生产和应用还将导致地球矿产资源的匮乏和生态平衡的破坏。因此,混凝土能否长期作为最主要的建筑材料,不仅要求其具备在耐久性、施工性和强度等方面的高性能,而且最关键之处在于其绿色“含量”是否高。水泥虽然只占混凝土所有原材料质量的10 %~20 % ,但水泥工业生产中所消耗的能量是最多的,几乎占混凝土能耗的50 %~60 %;混凝土从原材料生产加工到浇筑成型的整个过程中,水泥工业是排放粉尘和有害气体的最大的污染源。 因而,发展绿色高性能混凝土的首要条件是生产和使用节能型、环境污染少的绿色水泥。“绿色”型水泥生产是将资源利用率和二次能源回收率均提高到最高水平,并能够循环利用其它工业的废渣和废料;技术装备上更强化了环境保护的技术和措施;产品除了全面实行质量管理体系外,还真正实行全面环境保护的保证体系;粉尘、废渣和废气等的排放几乎接近于零,真正做到不但自身实现零污染,无公害,又因循环利用其它工业的废料、废渣,而帮助其它工业进行三废消化,最大限度地改善环境。3 开发研制和应用绿色高性能混凝土尚需进行的工作 绿色高性能混凝土从原材料到具体工程应用涉及到的部门和环节很多。实现水泥生产“绿色化”一个环节是不够的,必须同时开展如下工作: 第一、要加强混凝土科研开发、标准制定、工程设计和施工人员等的环保节能意识,加大“绿色”概念的宣传力度,引起混凝土工程领域各环节的高度重视。 第二、工程设计人员应更新传统的混凝土设计方法,敢于在重大工程中掺用活性混合材料和加大掺量;施工人员要提高质量意识,严格施工,加大活性混合材掺量对混凝土各项性能所产生的益处已众所周知,但未被工程界充分重视。比如,对粉煤灰的应用问题,尽管科研工作者早就着手大掺量粉煤灰混凝土的研究,但目前即使在商品混凝土中粉煤灰的实际掺量一般也只有15 %左右,很少超过20 %。有人曾研究过粉煤灰替代率为35 %~50 %的低强度等级混凝土(14MPa)的性能,认为可大量用于道路的路基,大掺量粉煤灰混凝土,尤其适合于大体积混凝土工程和海工混凝土工程。再如针对混凝土材料的耐久性,人们并没有象所期望的那样加大活性混合材的用量,控制某些种类防冻剂和早强剂的掺量,或者重视低碱水泥的使用,以致范围广泛的混凝土工程碱集料破坏现象仍很严重。 第三,研究对工业废渣行之有效的加工方法、加工设备,以期充分利用其活性;在工业废渣利用方面,还要坚持贯彻优质优用的原则,即超细磨矿渣和优质粉煤灰主要用于配制高强度混凝土,而配制中低强度等级混凝土一般仍应采用普通细度矿渣或低等级粉煤灰。 第四,开发适合于掺活性混合材混凝土的高性能外加剂,以解决掺混合材对混凝土性能产生的某些负面效应,同时还可避免过分提倡混合材超细磨所引起的能耗问题。通过掺用合适的高效减水剂和引气剂,可配制出各种性能相当优异的混凝土。对于大掺量普通细度活性混合材的混凝土,通过掺加有效的激发剂,有望改善其早期强度,但应严格限制激发剂中C1 和SO2的含量,或禁止使用这类激发剂,以免引起钢筋锈蚀或碱集料反应。 第五,研究一种或多种活性混合材和外加剂与水泥矿物成分的超叠加效应,以便针对具体材料提出最佳设计方案。 第六,对纸浆黑色废液进行加工处理,开发以纸浆废液为主要原材料的各种外加剂,并扩大其使用范围,长期以来,黑色纸浆废液一直是导致我国长江、黄河流域以及其它河道水质严重污染的“元凶”。我国大约有9000 多家造纸厂,每年产生的黑色废液大约有30 亿~90 亿t ,绝大多数厂家都把未经处理的废液直接排放到江河中,造成的污染十分惊人———竟占我国所有化工污染的1/ 4 ! 尽管国家已对部分厂家实行了关停并转,但处理纸浆废液的任务仍刻不容缓。利用纸浆废液来制取混凝土减水剂不仅可以节省工业萘的消耗,降低成本,最重要的是可帮助造纸厂处理并循环利用废液,减少其对环境、工农业生产以及人身健康造成的巨大危害。 第七,研究和制定绿色高性能混凝土的质量控制方法、验收标准等,绿色高性能混凝土都要求掺加活性混合材,然而,除硅灰和稻壳灰等外,活性混合材对混凝土强度的贡献主要在后期。如果仍沿用普通混凝土质量控制方法和验收标准,即以28 d 抗压强度来衡量混凝土的质量,则不符合实际情况,势必要造成强度和材料的浪费,也影响绿色高性能混凝土生产者的积极性,使绿色高性能混凝土难以推广,这与混凝土“绿色化”的真正目的是背道而驰的。另外,绿色高性能混凝土要求混凝土具有较为优良的耐久性,但对混凝土质量评定的传统和现行的标准只考虑强度,而对耐久性指标一般不予考虑,希望新标准中增加耐久性指标。 第八,应针对当前城市改造过程中大量拆除旧结构物混凝土,研究出一整套破碎、分级技术,开发再生混凝土,用于浇筑强度要求相对较低的地坪、中低等级混凝土路面、路基等工程。
土木工程毕业论文参考文献 导语:随着科学技术的进步和工程实践的发展,土木工程这个学科也已发展成为内涵广泛、门类众多、结构复杂的综合体系。对我们的生活产生深远的影
建筑工程是由建筑材料组成的,因而建筑材料在整个建筑工程建设过程中均占据十分重要的地位。下文是我为大家整理的关于建筑材料毕业论文的范文,欢迎大家阅读参考!建筑材料
1.简述混凝土近百年的发展 2.混凝土耐久性的重要性 3.怎么提高混凝土耐久性4.混凝土耐久性的发展前景
混凝土养护技术论文篇二 对混凝土养护技术的探讨 [摘 要]随着社会的发展,我国的工程项目日益增多,而混凝土作为工程项目中必不可少的材料之
自密实混凝土 现在建筑的重要问题就是由于施工困难造成振捣不密实,产生微小裂缝及气泡,从而严重影响砼的强度,自密实混凝土可以极大的便利结构复杂处的施工! 急切需