• 回答数

    5

  • 浏览数

    235

小若冰MM
首页 > 学术期刊 > 多种计量方法对比的研究论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

吃是王道呼

已采纳

计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名:学 号:班 级: ()级统计学系()班指导教师:时 间:(上面是论文封皮)23个城市城镇居民人均消费支出与其影响因素的分析(题目)一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况(表格)地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 1.6 1.8 1865.1 1633.2 1187.9天津 1.4 2.0 2010.6 1889.8 939.8石家庄 1.4 2.0 1061.3 1010.0 722.9太原 1.3 2.2 1256.9 1159.9 789.5呼和浩特 1.5 1.9 1354.2 1279.8 772.7沈阳 1.3 2.1 1148.5 1048.7 812.1大连 1.6 1.8 1269.8 1133.1 946.5长春 1.8 1.7 1156.1 1016.1 690.2哈尔滨 1.4 2.0 992.8 942.5 727.4上海 1.6 1.9 1884.0 1686.1 1505.3南京 1.4 2.0 1536.4 1394.0 920.6杭州 1.5 1.9 1695.0 1464.9 1264.2宁波 1.5 1.8 1759.4 1543.2 1271.4合肥 1.6 1.8 1042.5 950.1 686.9福州 1.7 1.9 1172.5 1059.4 942.8厦门 1.5 1.9 1631.7 1394.3 998.7南昌 1.4 1.8 1405.0 1321.1 665.4济南 1.7 1.7 1491.3 1356.8 1071.4青岛 1.6 1.8 1495.6 1378.5 1020.7郑州 1.4 2.1 1012.2 954.2 750.3武汉 1.5 2.0 1052.5 972.2 853.1长沙 1.4 2.1 1256.9 1148.9 986.8广州 1.7 1.8 1898.6 1591.1 1215.1四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为:其中:——人均消费支出——常数项——回归方程的参数——平均每户就业人口数——平均每一就业者负担人口数——平均每人实际月收入——人均可支配收入——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程:首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -1682.180 1311.506 -1.282633 0.2159X1 564.3490 395.2332 1.427889 0.1704X2 569.1209 379.7866 1.498528 0.1513X3 1.552510 0.629371 2.466766 0.0239X4 -1.180652 0.742107 -1.590947 0.1290R-squared 0.721234 Mean dependent var 945.2913Adjusted R-squared 0.659286 S.D. dependent var 224.1711S.E. of regression 130.8502 Akaike info criterion 12.77564Sum squared resid 308191.9 Schwarz criterion 13.02249Log likelihood -141.9199 F-statistic 11.64259Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,从而初步得到的回归方程为:Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)F=11.64259 df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 153.8238 518.6688 0.296574 0.7697X1 523.0964 341.4840 1.531833 0.1405R-squared 0.100508 Mean dependent var 945.2913Adjusted R-squared 0.057675 S.D. dependent var 224.1711S.E. of regression 217.6105 Akaike info criterion 13.68623Sum squared resid 994441.2 Schwarz criterion 13.78497Log likelihood -155.3917 F-statistic 2.346511Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491X2:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 1756.641 667.2658 2.632596 0.0156X2 -424.1146 347.9597 -1.218861 0.2364R-squared 0.066070 Mean dependent var 945.2913Adjusted R-squared 0.021597 S.D. dependent var 224.1711S.E. of regression 221.7371 Akaike info criterion 13.72380Sum squared resid 1032515. Schwarz criterion 13.82254Log likelihood -155.8237 F-statistic 1.485623Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412X3:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 182.8827 137.8342 1.326831 0.1988X3 0.540400 0.095343 5.667960 0.0000R-squared 0.604712 Mean dependent var 945.2913Adjusted R-squared 0.585888 S.D. dependent var 224.1711S.E. of regression 144.2575 Akaike info criterion 12.86402Sum squared resid 437014.5 Schwarz criterion 12.96276Log likelihood -145.9362 F-statistic 32.12577Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013X4:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 184.7094 161.8178 1.141465 0.2665X4 0.596476 0.124231 4.801338 0.0001R-squared 0.523300 Mean dependent var 945.2913Adjusted R-squared 0.500600 S.D. dependent var 224.1711S.E. of regression 158.4178 Akaike info criterion 13.05129Sum squared resid 527020.1 Schwarz criterion 13.15003Log likelihood -148.0898 F-statistic 23.05284Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -222.8991 345.9081 -0.644388 0.5266X1 289.8101 227.2070 1.275533 0.2167X3 0.517213 0.095693 5.404899 0.0000R-squared 0.634449 Mean dependent var 945.2913Adjusted R-squared 0.597894 S.D. dependent var 224.1711S.E. of regression 142.1510 Akaike info criterion 12.87276Sum squared resid 404138.2 Schwarz criterion 13.02087Log likelihood -145.0368 F-statistic 17.35596Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043X2、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 239.5536 531.1435 0.451015 0.6568X2 -27.00981 244.0392 -0.110678 0.9130X3 0.536856 0.102783 5.223221 0.0000R-squared 0.604954 Mean dependent var 945.2913Adjusted R-squared 0.565449 S.D. dependent var 224.1711S.E. of regression 147.7747 Akaike info criterion 12.95036Sum squared resid 436747.0 Schwarz criterion 13.09847Log likelihood -145.9292 F-statistic 15.31348Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 331.7015 142.5882 2.326290 0.0306X3 1.766892 0.553402 3.192782 0.0046X4 -1.473721 0.656624 -2.244390 0.0363R-squared 0.684240 Mean dependent var 945.2913Adjusted R-squared 0.652664 S.D. dependent var 224.1711S.E. of regression 132.1157 Akaike info criterion 12.72634Sum squared resid 349091.0 Schwarz criterion 12.87445Log likelihood -143.3529 F-statistic 21.66965Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 193.6693 403.8464 0.479562 0.6370X1 89.29944 243.6512 0.366505 0.7180X3 1.652622 0.646003 2.558228 0.0192X4 -1.345001 0.757634 -1.775265 0.0919R-squared 0.686457 Mean dependent var 945.2913Adjusted R-squared 0.636950 S.D. dependent var 224.1711S.E. of regression 135.0712 Akaike info criterion 12.80625Sum squared resid 346640.3 Schwarz criterion 13.00373Log likelihood -143.2719 F-statistic 13.86591Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050X2、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 62.60939 489.2088 0.127981 0.8995X2 134.1557 232.9303 0.575948 0.5714X3 1.886588 0.600027 3.144175 0.0053X4 -1.596394 0.701018 -2.277251 0.0345R-squared 0.689658 Mean dependent var 945.2913Adjusted R-squared 0.640657 S.D. dependent var 224.1711S.E. of regression 134.3798 Akaike info criterion 12.79599Sum squared resid 343100.8 Schwarz criterion 12.99347Log likelihood -143.1539 F-statistic 14.07429Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:Se= (142.5882) (0.553402) (0.656624)T= (2.326290) (3.192782) (-2.244390)F=21.66965 df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic 1.071659 Probability 0.399378Obs*R-squared 4.423847 Probability 0.351673Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 34247.50 128527.9 0.266460 0.7929X3 247.9623 628.1924 0.394723 0.6977X3^2 -0.071268 0.187278 -0.380548 0.7080X4 -333.6779 714.3390 -0.467114 0.6460X4^2 0.121138 0.229933 0.526841 0.6047R-squared 0.192341 Mean dependent var 15177.87Adjusted R-squared 0.012861 S.D. dependent var 23242.54S.E. of regression 23092.59 Akaike info criterion 23.12207Sum squared resid 9.60E+09 Schwarz criterion 23.36892Log likelihood -260.9038 F-statistic 1.071659Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。(四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543

137 评论

粉红蚕宝宝

希望以上网站内容能帮到你

301 评论

梦朦胧6620

比较分析方法是自然科学、社会以及日常生活中常用的分析方法之一。比较分析试图通过事物异同点的比较,区别事物,达到对各个事物深入的了解认识,从而把握各个事物。在调查资料的理论分析中,当需要通过比较两个或者两个以上事物或者对象的异同来达到某个事物的认识时,一般采用比较分析方法。进行比较分析,应把握如下几点: 1.横向比较与纵向比较相结合横向比较是将同一时期的相关的事物进行比较。这种比较既可在同类事物内部的不同部分之间进行。通过横向比较可以发现两类事物或同类事物不同部分之间在某一方面的差异,进而分析出造成这种差异的原因。纵向比较是对同一对象在不同时期的具体特点进行比较。纵向比较可以揭示认识对象在不同时期不同阶段上的特点及其变化发展的趋势。横向比较和纵向比较各有其长短。横向比较的优点是现实性强,容易理解,便于掌握,它侧重从质与量上对认识对象加以区分;缺点是一种静态比较法,难以揭示事物的本质规律及发展趋势。纵向比较的长处在于能够揭示事物之间的有机联系,认识事物之间的发展趋势;但它往往对事物之间横向联系注意不够。因此,需要将横向比较与纵向比较相结合,以达到对事物的深入了解和认识。2.比较事物的相同点与相异点比较可以在异类对象之间进行,也可以在同类对象之间进行,还可以在同一对象的不同部分之间进行。分析社会调查资料,重视同类对象和同一对象的不同方面、不同部分之间的比较。比较事物或对象的同和异是比较分析的两项内容。首先是共同点的比较。确定事物或对象的共同点包括两个方面:一是找出共同性质,即同类事物的“同类”性,如男女职工的比较分析,“职工”就是共同性质,表明具有共同的劳动性质,这就是比较分析的前提条件。二是找出调查对象表现出来的共同特点。其次是差异点的比较。这是比较分析主要的和重要的工作。确定差异点,就是找出调查对象表现出来的不同特点。3.要对可比的事物作比较,不要在不可比的事物之间作比较。例如,社会指标和经济指标的比较常常应当弄清指标的可比口径问题,弄清指标概念的含义和指标数值的计算方法。具有相同含义和相同计算口径的统计指标,都是可比,反之是不可比的,对于调查对象的比较来说,要选择可比的方面开展比较分析。4.选择和制定精确的、稳定的比较标准定量比较的计量单位应选择精确统一的标准,如长度基本单位使用米,重量基本单位使用公斤,容积基本单位使用升,等等。再比如家庭生活水平,主要看人均收入水平,用人民币为基本单位等。定性比较的标准应具有相对稳定性,比如全面普遍开展“五好家庭”的活动,其择定标准也应具有相对稳定性。只有选择和制定精确的稳定的比较标准,比较分析才有章可循,得以坚持。查看全文

229 评论

么里斯古

有了计量模型与数据之后,可根据数据类型与特点,选择合适的计量方法。 比如,被解释变量为虚拟变量,可使用 Probit 或 Logit。如果是面板数据,应考虑固定效应、随机效应、时间效应等。 如果是时间序列,须先判断是否含单位根,再决定使用相应的计量方法。 对于一般数据,通常先作 OLS,看结果,作为参照系。作完OLS 后,可画残差图,大致看扰动项是否符合经典假定,然后进行严格检验。如有所违背(比如,异方差、自相关),则做相应处理。对于时间序列,可检验是否存在结构变动(邹检验)。应对数据质量进行检验,判断是否存在多重共线性、极端值、弱工具变量等,并做相应调整。由于受数据可得性(availability)的限制,遗漏变量几乎不可避免,有必要在论文中对此进行讨论。面板数据可在一定程度上克服遗漏变量问题,故比横截面数据或时间序列更有说服力。如可获得面板数据,应尽力争取。 比如,对于中国的宏观变量,如使用全国的时间序列,一般样本容量较小,可考虑省际面板(provincial panel)数据。另一常见问题是内生解释变量。一般需找到有效工具变量才能得到一致估计。大多数实证论文都希望说明 x 对 y 的因果作用。从回归分析的相关关系升华到因果关系,是很大的飞跃,需要使用适当的计量方法来识别这种因果关系。

182 评论

深田和美

对比分析类论文最主要的是要理解其中的含义,然后根据中心思想去写。

135 评论

相关问答

  • 政策对比论文研究方法

    如果你是要写论文关于政策的影响,你需要考虑政策前后几年的情况,包括政策实施前后的不同情况以及政策实施后可能带来的不同影响。你可以先研究一下政策实施前后的趋势情况

    何水生之LED灯 2人参与回答 2023-12-08
  • 五种插值法的对比研究论文

    nearest:执行速度最快,输出结果为直角转折;linear:默认值,在样本点上斜率变化很大;spline:最花时间,但输出结果也最平滑;cubic:最占内存

    别惹阿玉 4人参与回答 2023-12-11
  • 论文研究方法有哪几种对比法

    论文研究方法包括什么 论文研究方法包括什么?论文是大学毕业或者是学术研究经常用到的,研究方法是完成论文的一种手段和方式,那么论文研究方法包括什么呢?以下是我整理

    豆哥豆爷 2人参与回答 2023-12-09
  • 论文中常用的研究方法对比分析法

    论文的研究方法:规范研究法,实证研究法,案例分析法,比较分析法,思维方法,内容分析法,文献分析法,数学方法。 一、规范研究法 会计理论研究的一般方法,它是根据一

    小鸡炖蘑菇mimi 2人参与回答 2023-12-10
  • 论文对比研究的研究方法

    论文研究方法是写论文的最基本的构成要素,为了帮助大家更好的写论文,接下来,与大家一起研究论文研究方法有哪些呢? 1、调查法 调查法是最为常用的方法之一,是指有目

    荷塘荔色 2人参与回答 2023-12-07