静静娃童鞋
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
金凯瑞砖家
1500字论文格式模板(通用5篇)
无论是在学习还是在工作中,大家最不陌生的就是论文了吧,通过论文写作可以培养我们独立思考和创新的能力。相信许多人会觉得论文很难写吧,以下是我为大家收集的1500字论文格式模板(通用5篇),欢迎大家分享。
1 计算机网络的定义
计算机网络就是利用通讯设备和通信线路将地理位置不同的、具有独立功能的多台计算机系统遵循约定的通信协议互连成一个规模大、功能强的网络系统,用功能完善的网络软件(即网络通信协议、信息交换方式和网络操作系统等)来实现交互通信、资源共享、信息交换、综合信息服务、协同工作以及在线处理等功能的系统。
2 计算机网络的分类
1)计算机网络按照地理范围划分为:局域网、城域网、广域网和互联网四种;2)按拓扑结构划分为:总线型、星型、环型、树型和网状网;3)按交换方式划分为:线路交换网、存储转发交换网和混合交换网;4)按传输带宽方式进行划分为:基带网和宽带网;5)按网络中使用的操作系统分为:NetWare网、Windows NT网和Unix网等;6)按传输技术分为:广播网、非广播多路访问网、点到点网。
3 计算机网络系统的构成
计算机网络系统通常由资源子网、通信子网和通信协议三个部分组成。资源子网在计算机网络中直接面向用户;通信子网在计算机网络中负责数据通信、全网络面向应用的数据处理工作。而通信双方必须共同遵守的规则和约定就称为通信协议,它的存在与否是计算机网络与一般计算机互连系统的根本区别。
4 计算机网络的主要功能
资源共享:计算机网络的主要目的是共享资源。共享的资源有:硬件资源、软件资源、数据资源。其中共享数据资源是计算机网络最重要的目的。
数据通信:数据通信是指利用计算机网络实现不同地理位置的计算机之间的数据传送,运用技术手段实现网络间的信息传递。这是计算机网络的最基本的功能,也是实现其他功能的基础。如电子邮件、传真、远程数据交换等。
分布处理:是指当计算机网络中的某个计算机系统负荷过重时,可以将其处理的任务传送到网络中的其它计算机系统中,以提高整个系统的利用率。对于大型的综合性的科学计算和信息处理,通过适当的算法,将任务分散到网络中不同的计算机系统上进行分布式的处理。促进分布式数据处理和分布式数据库的发展。利用网络实现分布处理,建立性能优良、可靠性高的分布式数据库系统。
综合信息服务:在当今的信息化社会中,各行各业每时每刻都要产生大量的信息需要及时的处理,而计算机网络在其中起着十分重要的作用。
5 计算机网络的常用设备
网卡(NIC):插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。
集线器(Hub):是单一总线共享式设备,提供很多网络接口,负责将网络中多个计算机连在一起。所谓共享是指集线器所有端口共用一条数据总线,因此平均每用户(端口)传递的数据量、速率等受活动用户(端口)总数量的限制。
交换机(Switch):也称交换式集线器。它同样具备许多接口,提供多个网络节点互连。但它的性能却较共享集线器大为提高:相当于拥有多条总线,使各端口设备能独立地作数据传递而不受其它设备影响,表现在用户面前即是各端口有独立、固定的带宽。此外,交换机还具备集线器欠缺的功能,如数据过滤、网络分段、广播控制等。
线缆:网络的距离扩展需要通过线缆来实现,不同的网络有不同连接线缆,如光纤、双绞线、同轴电缆等。
公共电话网:即PSTN(Public Swithed Telephone Network),速度9600bps~28.8kbps,经压缩后最高可达115.2kbps,传输介质是普通电话线。
综合业务数字网:即ISDN(Integrated Service Digital Network),是一种拨号连接方式。低速接口为128kbps(高速可达2M),它使用ISDN线路或通过电信局在普通电话线上加装ISDN业务。ISDN为数字传输方式,具有连接迅速、传输可靠等特点,并支持对方号码识别。
专线:即Leased Line,在中国称为DDN,是一种点到点的连接方式,速度一般选择64kbps~2.048Mbps。专线的好处是数据传递有较好的保障,带宽恒定。
X.25网:是一种出现较早且依然应用广泛的广域网方式,速度为9600bps~64kbps;有冗余纠错功能,可 靠性高,但由此带来的副效应是速度慢,延迟大。
异步传输模式:即ATM(Asynchronous Transfer Mode),是一种信元交换网络,最大特点是速率高、延迟小、传输质量有保障。ATM大多采用光纤作为连接介质,速率可高达上千(109bps)。
调制解调器(Modem):作为末端系统和通信系统之间信号转换的设备,是广域网中必不可少的设备之一。分为同步和异步两种,分别用来与路由器的同步和异步串口相连接,同步可用于专线、帧中继、X.25等,异步用于PSTN的连接在计算机网络时代。
6 结语
人们对计算机和互联网的利用必将会渗透到社会生产和生活的各个方面,通过计算机和网络的功能,将会给企业的生产和经营活动的开展以及老百姓的工作和生活带来极大的便利。在互联网的联系和沟通下,各种信息传播的速度将加快,企业和个人对网络信息的依赖程度也将不断加深,信息需求程度相对较大的部门将成为未来社会中创造高附加值的行业。并通过他们带动相关知识产业的进步和发展,甚至带动全社会的经济结构的优化调整,推动社会经济的全面进步。
计算机网络取得今天的发展成就,是人类文明进入到更高阶段的标志,它推动着人类社会向更现代化的方向发展,同时推动了知识经济时代的到来,人们通过计算机网络的连接,打破了原先在时间和空间上的阻隔,在无形中拉近了人与人之间的距离,也在一定程度上扩大了我们生存的空间,网络给我们提供了超乎寻常的方便和成功。但是,网络也给社会带来了更多的挑战,它要求我们要以更高的层次去面对新的生活和环境,同时不断地改变我们的思想和行为,我们要抓住网络时代带给我们机遇,不断努力推动人类社会向更的高阶段发展。
1摘要
“摘要”是对整篇论文的缩写,建立在通读全文、理解全文的基础之上。评审专家评阅论文时,总是先看摘要,摘要给专家留下第一印象,是评奖的敲门砖。“摘要”包括: 问题背景,要达到什么目标,解决问题的思路、方法和步骤,模型的主要内容、算法和结论,模型的特色。好的“摘要”能很快吸引评审专家的注意力,它建立在多次修改、反复推敲的基础之上,具有统揽全文、层次分明、重点突出、文笔流畅的特点。
2问题提出
“问题提出”也可写作“问题重述”。是将竞赛试题所给定的问题背景和解题要求用论文书写者自己的语言重新表述。在美国的数学建模竞赛中,这一部分称为 Background或者 Introduction。
3模型假设
任何问题的求解都有它的背景和适用范围,建模试题来自于现实问题,同样受到各种外在因素的约束。“模型假设”就是界定一个范围,或给出几个约束条件,一使得问题的解决过程不至于太复杂,二使得其他人在使用该模型时知晓它的适用范围。“模型假设”不是凭空臆造的,是在建立模型的过程中挖掘、提炼出来的。
4符号说明
数学符号是数学语言的基本元素,具有抽象性、准确性、简洁性的特点。数学模型由数学符号组成,模型的求解通过符号的运算来完成。可见,在建立数学模型时根据需要随时引入必要的数学符号是多么重要的事情。根据竞赛要求,在建立模型的过程中所引入的数学符号要在本模块给出说明,最好的说明方式是列一个表格。
5问题分析
众所周知,解决数学问题最难、最重要的一步就是明确解题思路,确定解题方法。而“分析”,则是迈出这一步的关键。数学建模也这样。建模试题往往由几个子问题组成,这时的“问题分析”既要有全局分析,也要有局部分析。“问题分析”包括: 分析解决该问题需要用到哪些专业背景知识; 分析解决问题的切入点、重点和难点; 分析解决问题的思路、方法、工具和步骤。这样的分析对于“如何建立模型? 采用哪些数学理论或公式? 怎样求解? 会遇到哪些困难?”具有指导作用。
6模型建立
“模型建立”就是将原问题抽象成数学的表示式,主要步骤:
第一步,根据问题的实际背景和专业背景,选择适当的数学理论或工具。例如,如果是变化率问题,则考虑借助于导数或微分方程的手段; 如果涉及面积、体积、曲线弧长、功、流量等几何量或物理量,则考虑运用积分元素法,将问题转化为定积分、或重积分、或曲线曲面积分; 如果是随机数据的处理,则考虑统计分析的方法。
第二步,确定常量、变量,用符号来表示这些量。
第三步,建立数学模型,即建立常量、变量之间的关系。这种关系可以是方程、函数或表格。
7模型求解
少数模型可能是简单的数学式子,求解起来比较容易。有些模型虽然也可用数学式子表示,但其中含有难以析出的参数,求解很困难,有的模型面对的就是一堆数据,对于这两种情形,就需要借助于软件 Matlab,Mathematic,Maple,SAS,SPSS中的某一个编程求解。
8模型检验
数学建模竞赛的题目来自于科技、工程、经济、社会等领域的实际问题。由于问题的复杂性和方法的局限性,所建立的数学模型与实际情况之间会有差距,模型可靠性的检验成为必然。为了检验提交的数学模型与实际情况吻合的程度,竞赛题中往往会提供一些来自于背景问题的实验数据。“模型检验”就是将给定的数据代入模型,计算相对误差和绝对误差,如果误差较大,就要返回去调整模型以提高可靠性。
9模型评价
该标题也可写成“模型的优缺点分析”。分析模型有哪些优点,缺点是什么。也有人将这里的标题改写为“模型评价、推广与改进”。其中的“推广”是将前述“模型假设”中的某些 条 件 适 当 放 宽,看看结果会怎样。“改进”是指对模型或算法做出某种改进。
10参考文献
列式参考的主要文献。
11附录
详细的软件程序、程序运算过程、运算结果; 用于模型检验的数据表格; 其他不宜放在正文中的数据表格。
1、研究背景
中国的教育体制我想就是每个人都沿着固定的模式一路走来,在同一个阶层的人们所掌握知识水平都差不多,如果父母或师长告诉你,这件事是不应该做的,那么他就会牢记一辈子。致使他会把他的经验告诉他的孙子,我们丢失了正常能力,失去了用自己独特的方式观察世界的能力。替而代之的是,我们把世界概括成一套简单的题目,头脑中的固定模式从不会使我们感到惊讶,因为在我们标准形象不一致的时候,我们几乎视而不见,所以,当我们把所有劳工领导人归类为势力小人,把所有诗人看作梦想家,把所有政治家视为虚情假意的欢迎者,就暴露了我们的局限性。
教育是关系国家和民族前途命运的大事,和我们每个人都有着极为密切的关系。作为国家的主人和民族的一分子,曾经或现在的受教育者或教育者,我们每个人都应当关注教育。
2、对于教育制度,受教育者或教育者都认为有进一步完善的必要。
对于应试教育有些人可能这样理解:应试教育有利的一面是能加快孩子们对知识的记忆与理解。但诸如个人能力、综合素质、创造性等则起不到太大的作用,弊端相当多。
应试教育的最直接后果是导致教育产品供给的短缺。其结果导致教育的高收费,更重要的是,它仿佛是一架考试的机器,因为它推动着学历教育向前迈进;它使得学生从小学到大学一直为考试忙不停。否则,就会因考试不及格宁被淘汰。在这种体制下,孩子们努力学习知识,以通过各种考试。
学校考试以其对学习成果的显示,对学习方向引导,对学生的激励,在这一过程中起了控制器,调节器和加速器的作用。当然考试的控制、调节、加速效应是应接作用与学生学习的考试不但对学生学习的促进、调节作用,在学校教育中,它还集中体现着人的智力、技能在某种程度上是学生自我表现的需要。因此,它在一定意义上体现了人的本恒。但现实生活中,我国的学校考试出现了异化现象,产生了与人的本性、人的社会化过程相分离的运动。考试本来是促进学生社会化过程的手段,却被当成了追求的目的,学生的发展倒成了争取考试合格的手段。考试过程中所有自然形成的关系却变成了分数关系。考试成为学生学习的一种强制力量,学生失去了自身学习的动力。最终学生把考试视为自己的对立面,把自己看成被分数奴役的人。
面对如此问题,无庸置疑,考试要改革,考试要面向未来的教育,考试要与社会发展同步,考试要服务与人类的自我特点,这是考试的基本方向。考试改革的基本出发点是:考试要体现教育使学生全面发展的目的,要创造一个使学生个体全面发展的环境。
目前,我们的学校教育是典型的应试教育,而学校教育主要存在三个方面的问题:第一重视很多智力好的学生的教育,而忽略了大多数学生的教育;第二重视知识的教育,忽略了能力的培养;第三重视智商,忽略了德育、体育、美育等方面的教育。对诸多弊端,中共中央国务院在《中国教育改革和发展纲要》中明确指出:"中小学要由应试教育转向全面提高国民素质的轨道,面向全体学生,全面提高学生的思想道德文化科学,劳动技能和身体心理素质,促进学生生动活泼的发展,办自各自特色"。
3、素质教育这一教育方式应运而生。
"素质教育"这个次越来越广泛应用,与此同时,要求对统治教育上干年的所谓"应试教育"进行改革的呼声也越来越高,那么什么是素质教育?又这样把应试教育向素质教育改革呢?
所谓素质教育,既培养一个人的中和素质,使学生学习的知识技能与社会生活紧密结合,让学生步入社会不会有一种贪图和盲从感,这样培养出的人才才能既有广泛的知识又有各方面的技能和创造力,这才是我们社会真正需要的复合型人才。
由于传统的应试教育思想在人们的头脑中已经根深蒂固,形成了一整套应试机制和模式。因此,要实现由应试教育向素质教育转轨,必须打破已有应试教育机制,建立起强有力的素质教育运行机制,以素质教育取代应试教育。实施素质教育是当前世界各国教育改革的总趋势,也是我国深化改革的核心问题,只有实施素质教育才能从根本上革除传统教育的弊端,达到教育的根本目的提高全民族的素质。
摘要: 当今社会在古代文学中强化人文素质教育与培养,具有特别重要的现实意义,使古典的精华力量在现代社会依然熠熠生辉,这样才有利于学生人文能力、人文精神的全面发展与提升,具备良好的心智水平,更好地适应未来的职业与社会。
关键词: 人文素质;古代文学;教育与培养
一、完善课程体系
依据人文素质教育理念,在原有课程体系基础上修改和完善,无需另建一套课程体系,而是使新增设的人文素质教育课程与原有的课程相互照应,融于同一个大的课程体系中,形成一个有机的课程整体,使课程结构更合理、更科学。具体如下:一是在通识课程中增设最基本的人文素质教育必修课程,如人文素质教育通论、现代社交礼仪、美学与美育、中国通史、古典名著导读与鉴赏、实用书法书写与欣赏、世界名曲欣赏等,并给予相应的学分。二是结合学科课程渗透人文素质教育。如古代文学教师可以结合专业必修课、专业选修课、公共选修课等在教学中对文学院以及全学院学生进行人文素质教育。三是根据专业特点开设与其相对应的人文素质教育课程。可以在专业必修课中增设相应的专业人文素质教育课程,并给予相应的学分,如开设哲学史、戏剧史、教育史等。
二、调整教学内容
这是强化大学生素质教育与培养的关键。文学是民族文化的魂魄,中国古代文学披露的是华夏民族的精气神、炎黄子孙的奋斗史、华夏江山的正气歌,其中蕴含着深厚的人文精神财富。古代文学教学内容要彰显人文素质的精华。既要固守文化传承,使古代文学的精华得以继承和发扬,培养深厚的人文底蕴,还要强化古代文学中的创新精神和创新意识,古代文人提出众多创新思想:“守旧无功”“质疑问难”“濯去旧见以来新意”“不泥古”等。古代文学中的创新精神和创新意识,成为培养创新人才精神上的根基和文化价值取向,古代文学把创新作为新型人文人才的培养目标,使学生树立创新意识,与时俱进。更要关注情商教育,培养现代人文精神。提升思想境界,发展健康个性,塑造健全人格,使之成为学生面对社会压力、人生挫折的动力源泉。
三、建设师资队伍
教师是学生人文素质教育的主导,师者深厚的人文素质储备,是教师队伍建设的关键。师者应具有广博而深厚的文化底蕴,融文学、史学、哲学、艺术、审美、天文、地理等各领域为一炉,以敏锐深邃的时代感受,形成对生命、对生活、对社会的独特体悟。教师的人文素养,便是教之内功、师之根本。师资队伍建设,要注意师资来源,应尽量从本校现有的授课教师中挑选,个别的可外聘;师资培训,可采取校内、校外两种方式。从事必修课和专业课讲授的教师可参加校外举办的高级培训班或培训中心的学习。一般的授课教师要参加校内普通培训班的学习,以了解人文教育的指导思想、基本内容、基本方法等知识,提高全体教师的人文素养和教育水平。
四、营造文化氛围
重视社会实践环节,拓展人文素质教育的培养空间。校园环境的文化氛围,对学生人文素质教育与培养具有强大的潜移默化的作用。开展多元文化活动,使学生的人格得到塑造,个性得到发展,精神得到升华。如请专家学者作系列人文讲座或学术报告,引导学生提高人文素养;以校报、校园网和广播站为载体,开设人文教育专栏,拓展校园文化活动空间;建立人文社团,如新闻、文学、楹联、艺术等协会或社团;开展健康向上、格调高雅、内容丰富的校园文化生活,包括开展古典名著读书报告会、经典诵读和演讲比赛等活动。老师还应充分利用现有的空间来营造浓厚的人文氛围,使学生从中学习知识、开阔视野、美化心灵、娱乐身心,是培养学生人文底蕴、塑造学生人文情怀的有效途径。
五、结语
总之,当今社会在古代文学中强化人文素质教育与培养,具有特别重要的`现实意义,使古典的精华力量在现代社会依然熠熠生辉,这样才有利于学生人文能力、人文精神的全面发展与提升,具备良好的心智水平,更好地适应未来的职业与社会。
参考文献
1、论中国古代的文体学传统——兼论古代文学文体研究的对象与方法钱志熙北京大学学报(哲学社会科学版)2004-09-2069
2、文学传播学的创建与中国古代文学传播研究曹萌沈阳师范大学学报(社会科学版)2004-09-3048
一、教育理念与现实情况结合
在以前旧式的教育下,学生勤奋的学习只是为了应付考试,给家长和老师一个交代,然而数学比较实用,体现智力价值的内容,却在教科书没有学到。应试教育的弊端逐一体现出来,表明当前我国数学教育体系的情况严重落后,拖慢社会的发展,必须重视新课改和新的教学理念。从“新课标下高中数学的改革”看来,我们要从死板的教科书中走出来,开拓学生的视野,运用新的理念来改变旧式的数学教育体系。从数学哲学方面讲,数学史最含有生命力和统摄力的教学体系,是否学好数学,不是从数学成绩分数的高低来判断,最重要的是要以他如何看待数学,如何去学好数学,能否充分了解数学,熟练运用数学观念和方法分析日常生活现象,去解决问题。
在现实中,不同的人具有不同的数学观念,不同观念会导致人们不同行为和工作。一个学生如果对数学产生艰深难懂、枯燥乏味、很难学好的思想,必然会导致逃避数学,逃避数学老师,不去接触数学读物自行封闭行为。一个教师如果认为数学只是公式、法则、考试,那么他的课堂教学就是填鸭式的。但实践教学能让学习回归生活,注入新鲜的血液。体现在:1.让人们知道学习数学是未来社会发展的需求,对其制定和安排教学目标。2.制定符合现阶段学生适应的大众化和生活化的教学内容。3.让学生在生活和活动中,找到学习数学的兴趣,丰富其教学内容。
二、课堂教育方法的改变
课堂作为课改的主要阵地,是新课改是否有成效的直接体现。课堂教育的改变要从体现出来的问题入手,让课堂的学习氛围活跃起来,让教学变得趣味些,不再一味的枯燥,提高学生的学习激情和积极性,让学生学会自主学习,提高学习的效率。在教学上,教师不是讲完一个课时就觉得万事大吉了,但也不是讲得越多越好,要以学生接受能力为前提,要有质量的保证,要让学生明白教师只是讲了主要教学重点,其余要让学生自主学会学习,不懂再去问教师,切实提高课堂讲课的效率性。教师要学会“精讲”,把主要教学内容讲清楚,如重点、关键性的问题等。
在上课时的要求:(1)内容要简洁。扣住主题要求,突显重点、关键问题、难点;(2)方式得当。既要能体现出教学目标,又能复合学生的实际情况;(3)言语简洁明了。趣味生动,其提示作用,不要一味的死板,引起学生兴趣和思考。“多练”,是指在教师的指导下,学生能反复的练习,用口、动手、动脑充分运用课堂知识去解决问题,在练习的过程中,教师要起监督和指导作用,练习的内容要得当,要有一定的难度和深度,不要机械重复去练习,要有分寸。通过练习,让学生稳定熟练的掌握所学知识,培养其全面能力,形成技能、技巧。
学生学会思考,去质疑问题,思维的驱动在于质疑,能成为学生的动力,能激发学生的求知欲,让学生变得活跃起来。而以前的旧式教学是以事先确定好的老师问学生答的模式,使得课堂气氛僵硬,学生的问答完全按照教师的套路,根本没什么价值所在,又不能有效的省时,这值得我们去反省。在新的教学中,要让学生自主的去探讨,在自己思考问题过程中,才能发现问题,反之,没有经过自己大脑思考,是不会产生深刻问题的。教师的提问有利于养成自主思考问题的好习惯,提高学生学习效率的一条捷径,那些具有提问思考能力的学生是学到了一项学习能力,因此,我们要激发学生质疑的意识,让他们敢于提问和思考。
比如,①让教师去引导,提出问题让学生找到问题的关键点去解决,在此过程发现问题,进而去思考和解决问题。②教师要提倡学生主动预习,在预习中发现问题,从学习的重点、关键点发现问题,学会从书上的例题中找到解决的方法。③新旧知识的联系。数学知识点都是前后联系的,有许多新的知识是在旧的知识基础上拓展开来的,只要认真思考就能产生许多问题,所以复习旧的知识,也是学习新知识的必要手段。
三、结束语
总之,高中数学课程改革是现代社会发展必然需求,这关系到社会对培养人才的要求。教育改革是一个漫长且艰辛的过程,这就要求教师们要以积极的心态投入进去,要正面看待课堂教学,正确认识教学理念,必须身体力行,努力做一个优秀的教师,培养出社会需要的全面人才。
远离的兔子
高中数学建模的三种教学形式作者(来源):左双奇* 位育中学 发布时间:2007-09-06高中数学建模的三种教学形式左双奇* (位育中学)问题的提出数学建模的教学实践在我国己有十多年的探索了,新的国家课程标准和新的教材都将数学建模内容列入学生必修内容。在探究性学习的探索中,一些学校选择了数学建模做为突破口;在进行数学课题学习的教学实践中,数学建模是其中的一种重要形式。近年来,我校为配合上海市中学生数学知识应用竞赛,对数学建模教学进行了积极的探索,针对人为地将数学建模教学与曰常课堂教学相割裂、教师和学生对数学建模这种具有多样性、新奇性的学习形式存在的畏难心理等困难,我校在数学建模的教学中主要采用了以下循序渐近的三个不同层次的教学形式来克服以上的困难。研究方法和过程一、常规课堂教学中的数学建模教学广义地说,一切数学概念、数学理论体系、数学公式、方程式和算法系统都可以称为数学模形。如“椭圆的方程及图象”就是一个数学模型,“用‘二分法’求方程的一个近似解”也是一个数学模型。针对学生在数学建模中不会对实际问题进行抽象、简化、假设变量和参数,形成明确的数学框架的困难,我们在常规的数学课堂教学中,有意识地选择合适的教学内容,模仿实际问题中建立数学模型的过程,来处理教材中常规的学习内容,从而为学生由实际问题来建立模型奠定基础。譬如,对于二面角内容的教学,在学生原有生活经历中,有水坝面和水平面成适当的角的印象;有半开着的门与墙面形成角的印象,那么我们在让学生形成二面角的概念时,应当从学生已有的这些认识中,舍弃具体的水坝、门等对象,而抽象出“从一条直线出发的两个半平面所组成的图形叫做二面角”,在这里,半平面是相对于水坝拦水面、门等的具体对象而进行合理假设得到的理想化对象,而在进一步研究如何度量一个二面角的大小时,我们是让学生提出各种方案,然后通过讨论、比较各方案所定义的几何量对给定的二面角是不是不变量,同时又简洁表达了二面角中两个半平面闭合程度的大小。以上关于二面角的概念及其度量方法的教学过程,实际上就是建立数学模型并研究模型的过程。这个教学案例说明,在常规的曰常课堂教学中,完全可以选定适当内容,创设出数学建模的教学情景来处理教学内容,从而为学生真正面对实际问题来建立模型、研究模型创造条件。二、教师提供问题的数学建模教学教师提供问题的数学建模,基本上同目前开展的大学生、中学生数学建模竞赛中需要完成的建模任务相同。这种形式的数学建模学生不需要自己选定实际问题研究,而是由教师选定适合于学生水平的实际问题呈现给学生,在教师的启发、引导下,学生小组通过讨论,自己完成模型选择和建立、计算、验证等过程,最后用小论文的形式呈现自己的研究成果,这种形式的数学建模学生已真正接触到实际问题,并经历建模的全过程。经过了曰常课堂教学中的数学建模教学,学生对什么是数学建模已有了一定的认识,并已经历了由具体问题抽象出明确数学框架的锻练,因此,我们在这种形式的数学建模教学中,主要是加强以下几个方面的教学。1.提供的实际问题必须难易适度,应当适合于学生的认知水平。对于较难的问题,我们往往给出必要提示,如启发学生通过提出合符常理的假设来将复杂的问题化为可以建模的问题;通过提示学生设定相关变量来达到使模型容易建立等。教师可从选定的实际问题、模型假设、变量设定等方面来控制难度,其中模型假设和变量设定是直接影响到模型建立的关键因素,对此关键点教师没计适当的教学形式,是“教师给定问题型”建模教学的关键。2.在“教师给定问题型”的数学建模的实践中,学生将经历建模的全过程,其中在模型的求解这一环节,往往需要借助计算机选择一个合适的数学软件平合,通过数学实验来求解模型。我校近年来,对这一环节的教学比较重视,每年都对将参加上海市中学生数学建模夏令营的学生团队进行数学软件Matlab的使用辅导,通过使学生精通一种软件的使用,再介绍学生自己钻研其它几种数学软件的使用,从而为学生正确求出模型的解,铺平了道路。3.在近五年对学生的辅导过程中,我们感到以下一些问题可用来训练学生的数学建模能力,它们是:(1)路桥问题,(2)限定区域的驾驶问题,(3)交通信号灯管理问题,(4)球的内接多面体问题,(5)螺旋线问题,(6)最短路问题,(7)最小连接问题,(8)选址问题,(9)面包进货问题等。4.在“教师给定问题型”的数学建模实践中,学生的研究结果,必须会用论文进行表达,会表达自己的研究思路及结果,是一个学生综合素质的体现。由于数学建模论文的撰写有一定的格式要求,当然这种格式要求是为了更好地使作者展现自己的研究结果,也是对论文质量的保证。所以,我们在教学中对学生论文撰写的格式进行了专门的辅导,一般地说,中学生的数学建模论文格式,应当具有以下的形式。(一) 论文摘要:做什么?用什么方法?借助什么工具?得出什么结论?为什么用这个工具?所得结果还有何推广应用?关键词:用以体现论文主要特色的几个词汇。(二) 问题的重述:用自己的语言将问题重述一遍,有自己的理解。(三) 必要的假设或假定:(1)根据实际情况假定,要合乎常理,简化原始问题;(2)变量的定义和声明。(四) 问题分析:变量之间会有什么关系?已知了什么?需在数学上解决什么?(五) 模型:能够写成数学表达式的一定要写,可用几种不同的模型。(六) 模型求解:用各种手段、包括借助计算器和计算机得出结论。(七) 问题的讨论:模型及使用的工具的优缺点(准确性、局限性),所得结论和所用方法可否延伸到其他领域。(八) 附录:引用的原始资料,编写的程序等。从以上八个方面对学生进行辅导,提出要求,将会有效保证学生正确用论文表达自己的研究结果。三,学生自选问题的数学建模教学。有了前面两种形式的建模教学。学生具备了一定的建模水平后,就可进入学生自选问题的数学建模教学阶段了。这一阶段是要求学生依据自己已掌握的建模知识和具备的经验,自己选定一个实际问题,通过建立数学模型加以解决,最后以论文的形式反映自已的研究成果。这一阶段的数学建模教学实践,若开展的好,则广大学生在解决实际问题中所表现出的挑战困难的勇气和丰富的想象力都将是我们老师始料未及的。近年来我校在这种形式的建模教学实践中,主要是加强了如下三个方面的指导。
数学论文的格式和其他论文格式差不多。这是我获广东中山市三等奖的数学论文,供参考。保障一年级数学学业成绩经验点滴 [论文摘要]:近年来,中山市古镇镇小学阶段年度的
数学建模论文格式与要求 数学建模论文的应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。同时也要注意论文格式的规范。下面是我搜集整理的
数学建模论文具体的格式要求如下: 1、论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。 2、论文第一页为承诺书,具体内容和格式见本规
,论文题目:(下附署名)要求准确,简练,醒目,新颖.2,目录目录是论文中主要段落的简表.(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整.字
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社