• 回答数

    3

  • 浏览数

    329

许多多000
首页 > 学术期刊 > 关于图像去噪的期刊论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

高小贱大琪琪

已采纳

当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年Do.M.N和VetterliM.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换[7,8],这种变换能够很好的表征图像的各向异性特征。由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果[9],该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节。在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。TerenceWang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG)[10]。这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子。线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊。在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大[11]。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器[12]。近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet提出了 MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础[13]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone[14]提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者D.L.Donoho和I.M.Johnstone提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[15,16,17]。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:EeroP.Semoncelli和EdwardH.Adelson提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[18];ElwoodT.Olsen等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法[19];学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法[20];G.P.Nason等利用原图像和小波变换域中图像的相关性用GCV(generalcross-validation)法对图像进行去噪[21];Hang.X和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理[22],VasilyStrela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法[23];同时,在19世纪60年代发展的隐马尔科夫模型(HiddenMarkov Model)[24],是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法[25,26],它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。另外,尽管小波去噪方法现在已经成为去噪和图像恢复的重要分支和主要研究方向,但目前在另类噪声分布(非高斯分布)下的去噪研究还不够。目前国际上开始将注意力投向这一领域,其中非高斯噪声的分布模型、高斯假设下的小波去噪方法在非高斯噪声下如何进行相应的拓展,是主要的研究方向。未来这一领域的成果将大大丰富小波去噪的内容。总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点[27],小波理论在去噪领域受到了许多学者的重视,并获得了良好的效果。但如何采取一定的技术消除图像噪声的同时保留图像细节仍是图像预处理中的重要课题。目前,基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。

254 评论

小小小黄鱼

图像去噪方法的研究摘要图像中的噪声会妨碍人们对图像的理解,而图像去噪的目的就是去除图像中的噪声,提高人们对图像的认识程度,以便对图像作进一步地处理。本论文的主要工作就是对图像的去噪方法进行了一定的介绍,并对其中的一些去噪算法作了进一步地研究,给出了几种新的图像去噪算法,在实验中这几种新的算法也取得了比较理想的去噪效果。 本文为了去除图像噪声,保留图像的边缘特征,提高峰值信噪比PSNR,最终得到清晰的重构图像,进行了研究改进.传统的去噪方法没有区分小波变换后高频部分中噪声信息和边缘特征信息,所以虽然能去除图像中的噪声,但是不能较完全的保留图像的边缘信息。针对这一缺点,本文首先对图像进行边缘检测。通过小波边缘检测方法确定边缘特征点的位置。在对小波变换后的各高频子带进行闺值处理时,保持非边缘特征点所在位置的小波系数在值去噪时不变,只对边缘点小波系数进行处理。这样就能既有效地去除噪声信息又能保留好边缘特征信息。理论分析和实验结果表明,与传统的去噪方法相比,本文方法能较好的保留图像的边缘信息的保留图像的边缘信息,并且提高了图像的峰值信噪比。关键词:图像处理;去噪;空域;频域;小波

157 评论

六月的橙子

论文: Generative adversarial network in medical imaging: A review 这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合成、分割、分类、检测、配准和其他工作,并介绍了包括医学图像数据集、度量指标等内容,并对未来工作做出展望。由于笔者研究方向之故,本博客暂时只关注重建、合成部分的应用。关于该论文中所有列出的文章,均可在 GitHub链接 中找到。 GAN在医学成像中通常有两种使用方式。第一个重点是生成方面,可以帮助探索和发现训练数据的基础结构以及学习生成新图像。此属性使GAN在应对数据短缺和患者隐私方面非常有前途。第二个重点是判别方面,其中辨别器D可以被视为正常图像的先验知识,因此在呈现异常图像时可以将其用作正则器或检测器。示例(a),(b),(c),(d),(e),(f)侧重于生成方面,而示例 (g) 利用了区分性方面。下面我们看一下应用到分割领域的文章。 (a)左侧显示被噪声污染的低剂量CT,右侧显示降噪的CT,该CT很好地保留了肝脏中的低对比度区域[1]。 (b)左侧显示MR图像,右侧显示合成的相应CT。在生成的CT图像中很好地描绘了骨骼结构[2]。 (c)生成的视网膜眼底图像具有如左血管图所示的确切血管结构[3]。(d)随机噪声(恶性和良性的混合物)随机产生的皮肤病变[4]。 (e)成人胸部X光片的器官(肺和心脏)分割实例。肺和心脏的形状受对抗性损失的调节[5]。 (f)第三列显示了在SWI序列上经过域调整的脑病变分割结果,无需经过相应的手动注释训练[6]。 (g) 视网膜光学相干断层扫描图像的异常检测[7]。 通常,研究人员使用像像素或逐像素损失(例如交叉熵)进行分割。尽管使用了U-net来组合低级和高级功能,但不能保证最终分割图的空间一致性。传统上,通常采用条件随机场(CRF)和图割方法通过结合空间相关性来进行细分。它们的局限性在于,它们仅考虑可能在低对比度区域中导致严重边界泄漏的 pair-wise potentials (二元势函数 -- CRF术语)。另一方面,鉴别器引入的对抗性损失可以考虑到高阶势能。在这种情况下,鉴别器可被视为形状调节器。当感兴趣的对象具有紧凑的形状时,例如物体,这种正则化效果更加显着。用于肺和心脏mask,但对诸如血管和导管等可变形物体的用处较小。这种调节效果还可以应用于分割器(生成器)的内部特征,以实现域(不同的扫描仪,成像协议,模态)的不变性[8、9]。对抗性损失也可以看作是f分割网络(生成器)的输出和 Ground Truth 之间的自适应学习相似性度量。因此,判别网络不是在像素域中测量相似度,而是将输入投影到低维流形并在那里测量相似度。这个想法类似于感知损失。不同之处在于,感知损失是根据自然图像上的预训练分类网络计算而来的,而对抗损失则是根据在生成器演变过程中经过自适应训练的网络计算的。 [10] 在鉴别器中使用了多尺度L1损失,其中比较了来自不同深度的特征。事实证明,这可以有效地对分割图执行多尺度的空间约束,并且系统在BRATS 13和15挑战中达到了最先进的性能。 [11] 建议在分割管道中同时使用带注释的图像和未带注释的图像。带注释的图像的使用方式与 [10] 中的相同。 [10] 和 [12] ,同时应用了基于元素的损失和对抗性损失。另一方面,未注释的图像仅用于计算分割图以混淆鉴别器。 [13] 将pix2pix与ACGAN结合使用以分割不同细胞类型的荧光显微镜图像。他们发现,辅助分类器分支的引入为区分器和细分器提供了调节。 这些前述的分割训练中采用对抗训练来确保最终分割图上更高阶结构的一致性,与之不同的是, [14] -- code 中的对抗训练方案,将网络不变性强加给训练样本的小扰动,以减少小数据集的过度拟合。表中总结了与医学图像分割有关的论文。 参考链接: [1] X. Yi, P. Babyn. Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J. Digit. Imaging (2018), pp. 1-15 [2] J.M. Wolterink, A.M. Dinkla, M.H. Savenije, P.R. Seevinck, C.A. van den Berg, I. Išgum. Deep MR to CT synthesis using unpaired data International Workshop on Simulation and Synthesis in Medical Imaging, Springer (2017), pp. 14-23 [3] P. Costa, A. Galdran, M.I. Meyer, M. Niemeijer, M. Abràmoff, A.M. Mendonça, A. Campilho. End-to-end adversarial retinal image synthesis IEEE Trans. Med. Imaging(2017) [4] Yi, X., Walia, E., Babyn, P., 2018. Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by Wasserstein distance for dermoscopy image classification. arXiv:1804.03700 . [5] Dai, W., Doyle, J., Liang, X., Zhang, H., Dong, N., Li, Y., Xing, E.P., 2017b. Scan: structure correcting adversarial network for chest x-rays organ segmentation. arXiv: 1703.08770 . [6] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [7] T. Schlegl, P. Seeböck, S.M. Waldstein, U. Schmidt-Erfurth, G. Langs Unsupervised anomaly detection with generative adversarial networks to guide marker discovery International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 146-157 [8] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [9] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 . [10] Y. Xue, T. Xu, H. Zhang, L.R. Long, X. Huang Segan: adversarial network with multi-scale l 1 loss for medical image segmentation Neuroinformatics, 16 (3–4) (2018), pp. 383-392 [11] Y. Zhang, L. Yang, J. Chen, M. Fredericksen, D.P. Hughes, D.Z. Chen. Deep adversarial networks for biomedical image segmentation utilizing unannotated images International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 408-416 [12] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 . [13] Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [14] W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018) [15] D. Yang, D. Xu, S.K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, D. Comaniciu. Automatic liver segmentation using an adversarial image-to-image network International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 507-515 [16] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 . [17] Rezaei, M., Yang, H., Meinel, C., 2018a. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. arXiv: 1810.03871 . [18] A. Sekuboyina, M. Rempfler, J. Kukačka, G. Tetteh, A. Valentinitsch, J.S. Kirschke, B.H. Menze. Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2018) [19] M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, C. Meinel. A conditional adversarial network for semantic segmentation of brain tumor International MICCAI Brainlesion Workshop, Springer (2017), pp. 241-252 [20] P. Moeskops, M. Veta, M.W. Lafarge, K.A. Eppenhof, J.P. Pluim. Adversarial training and dilated convolutions for brain MRI segmentation Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer (2017), pp. 56-64 [21] Kohl, S., Bonekamp, D., Schlemmer, H.-P., Yaqubi, K., Hohenfellner, M., Hadaschik, B., Radtke, J.-P., Maier-Hein, K., 2017. Adversarial networks for the detection of aggressive prostate cancer. arXiv: 1702.08014 . [22]Y. Huo, Z. Xu, S. Bao, C. Bermudez, A.J. Plassard, J. Liu, Y. Yao, A. Assad, R.G. Abramson, B.A. Landman. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks Medical Imaging 2018: Image Processing, 10574, International Society for Optics and Photonics (2018), p. 1057409 [23]K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [24]Z. Han, B. Wei, A. Mercado, S. Leung, S. Li. Spine-GAN: semantic segmentation of multiple spinal structures Med. Image Anal., 50 (2018), pp. 23-35 [25]M. Zhao, L. Wang, J. Chen, D. Nie, Y. Cong, S. Ahmad, A. Ho, P. Yuan, S.H. Fung, H.H. Deng, et al. Craniomaxillofacial bony structures segmentation from MRI with deep-supervision adversarial learning International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2018), pp. 720-727 [26] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 . [27]Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [28] S. Izadi, Z. Mirikharaji, J. Kawahara, G. Hamarneh. Generative adversarial networks to segment skin lesions Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE (2018), pp. 881-884 Close [29]W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018)

332 评论

相关问答

  • 图像处理类核心期刊

    三个都是北大中文核心期刊遥感学报是被SCI收录的。算是这三个中最好的吧中国图像图形学报,好像计算机图像处理方面投的比较多吧,三个中第二吧遥感技术与应用,三个当中

    飞天之梦想 5人参与回答 2023-12-06
  • 图像处理期刊

    图像与信号处理吧,开源的会容易点

    snake20001981 3人参与回答 2023-12-10
  • 暗通道图像去雾的研究论文

    姓名:张昊楠    学号:21021210691    学院:电子工程学院 【嵌牛导读】简要介绍暗通道先验理论基础 【嵌牛鼻子】图像处理 图像去

    小龇everything 3人参与回答 2023-12-11
  • 关于绘画构图的论文期刊

    建议你看下(艺术研究快报),当然你也可以在网上找下其他这类的期刊学习参考的

    xiaoshu20061 4人参与回答 2023-12-10
  • 红外图像去噪毕业论文

    一种用于三维空间杂波环境机动目标跟踪的数据互联方法,《电子与信息学报》2009年 第4期被动传感器阵列中基于粒子滤波的目标跟踪,《电子与信息学报》2009年 第

    太极武者NO1 2人参与回答 2023-12-07