• 回答数

    2

  • 浏览数

    174

激动的小胖
首页 > 学术期刊 > 石墨烯最新进展论文参考文献

2个回答 默认排序
  • 默认排序
  • 按时间排序

爱吃牛蛙的鱼

已采纳

随着微纳电子器件热功率密度的迅速增长,控制其温度已成为电子信息产业发展和应用的迫切需求。热界面材料的选择是热控技术的关键问题之一,开发高性能石墨烯基复合热界面材料已成为科学和工业界研究热点。其存在的关键问题是从原子尺度深刻理解复合体系中声子输运机理,进而协同提升石墨烯有效热导 率和界面热导。本文从石墨烯自身声子耦合热阻和界面热阻两方面综述石墨烯复 合体系导热的研究进展,讨论了提升石墨烯基复合体系界面热导的两种机制,同时分析了渐变界面和非平衡声子对界面热输运的调控机理。最后,我们对复合体系导热性能研究的发展趋势进行总结和展望。 01 引言 随着新兴的 5G 通信、物联网、新能源 汽车 电子、可穿戴设备、智慧城市、 航空航天等 科技 的兴起,芯片等器件朝着小型化、高功率密度、多功能化等方向发展。高度集成化和先进封装技术有效地提高了芯片功率密度并缩小了散热空间, 致使热流分布不均匀和局部过热等散热问题成为制约高性能芯片开发的核心问题之一。据统计,电子器件的温度每升高 10 -15 ,芯片使用寿命将会降低 50%。由此可见,控制电子器件的温度已成为电子产业发展的迫切需求。 热界面材料广泛被用于集成电路封装和器件散热,通过填充电子芯片与散 热器接触表面的微空隙及表面凹凸不平的孔洞来减少散热热阻。制约散热的热阻(RTIM)由两部分组成(图 1):热界面材料自身的热阻(Rc)和封装外壳与热界 面材料的界面热阻(Rint)。目前商用的热界面材料,其界面热阻 Rint(10-7~10-6 m2·KW-1),远小于自身的 Rc(10-6~10-5 m2·KW-1)。因此,热界面材料是电子器件热管理系统的重要组成部分,对提高散热效率和控制电子器件温度至关重要。 聚合物基复合材料具有良好的热机械性能,且质量轻、韧性好、低成本和易加工等特性。因此其全球市场份额占到热界面材料的 90%以上。聚合物基复合材料是聚合物基体和高导热填料组成的复合体系。二维纳米材料热导率远大于传统的填料,例如石墨烯热导率高达 2000~3000 Wm-1K-1(铜的 7~10 倍),且具有高比表面积和高机械强度等优异的性质,是极具应用前景的填料。因此,开发高性能石墨烯基复合体系的热界面材料已成为研究热点。 石墨烯基复合体系热界面材料的导热性能取决于石墨烯有效热导率和石墨烯/基体界面热导。石墨烯基复合体系中声子输运分为两个通道:(1)基体 石墨 烯的面外声子 石墨烯的面内声子-基体;(2)基体 石墨烯的面外声子 基体。分子模拟结果发现,第一种声子输运通道的热阻比第二种通道高 30 倍。 对比发现石墨烯“面内声子-面外声子”的非平衡声子输运对石墨烯有效热导率的发挥具有重要作用。从实验测量、理论分析及数值模拟方面均已证明了纳米尺度低维材料不同模式声子存在非平衡现象且对其热输运有重要影响。此外,石墨烯与基体之间的化学结构、机械性能、物理性质等诸多差异,使得石墨烯基复合体系中存在大量的界面结构,而界面是影响热输运的主要因素之一。这使得纳米尺度界面热输运成为石墨烯基复合体系热传导的核心问题。为了提高石墨烯基复合体系的热传导特性,本文将从石墨烯内非平衡声子和复合体系中界面非平衡声子两个方面讨论复合体系中石墨烯与基体的声子耦合热阻。02 石墨烯非平衡的内热阻 式中 J12 和 ΔT12 分别是模式 1 到 2 的热流和二者温差。通过建立声子间弱耦合解析 5 模型,可以定量描述和分析声子耦合强度的物理参数:耦合因子和耦合长度。耦合因子越小、耦合长度越长,对应着内热阻越大。 国内外一些课题组也在石墨烯非平衡的内热阻方面有突出的成果和贡献。美国德洲大学 Shi 等在研究拉曼法测量石墨烯热导率精度时也发现不同模式声子存在不同的温度,即它们之间处于非平衡态。普渡大学阮秀林等通过第一性原理模拟计算也表明,悬空石墨烯面内声子与面外声子的弱耦合作用促使不同模式声子处于非平衡态。 此后,美国普渡大学阮修林和清华大学曹炳阳等,通过模拟提取了石墨烯的不同模式声子温度,进一步从理论上研究不同模式声子非平衡态问题。上海交通大学鲍华与普渡大学阮修林等计算发现,当忽略石墨烯内非平衡声子输运,基于激光辐照测量得到的悬空石墨烯热导率将被低估 1.4-2.6 倍。此外研究者还发现在基于石墨烯的异质结中也存在非平衡声子输运 现象,例如:石墨烯/氮化硼、石墨烯/硅等异质结。因此,石墨烯内声子非平衡现象严重影响其有效热导率和实验表征的准确性。 03 复合体系界面热阻 提高石墨烯基热界面材料导热性能,除了上述内热组问题,还需考虑石墨烯/基体的界面热输运。石墨烯基复合体系热导提高不显著,主要源于在石墨烯和基体之间的界面影响声子输运,并产生较大界面热阻。大界面热阻的原因是多方面原因造成的。石墨烯和基体之间的作用力通常比较弱,远小于共价键。石墨烯和基体之间存在纳米尺度的空隙,空隙两段的原子之间几乎没有力的作用,空隙同时降低了两种材料的接触面积和作用力。即使完美接触的位置,由于两种材料本征热输运性质的差异和声子本征模式不匹配也会造成热阻。因此,提高复合体系界面热导研究可归纳为增强界面处原子间相互作用力和提升界面处两材料的 声子态密度匹配两个方面。

288 评论

美味偏执狂

超级材料—石墨烯

“超级材料”这个词近来被大量的使用——陶瓷超级材料,气凝胶超级材料,弹性体超级材料。但是有一种超级材料把它们都淹没了,它让它的发现者获得了诺贝尔奖,并为科学的炒作和兴奋定义了上限。它有可能使处理、电力储存、甚至太空 探索 发生革命性的变化,这就是石墨烯材料。那么石墨烯的市场应用主要有哪些方面的呢?

石墨烯是由单层碳原子排列成六边形晶格的一种异形体(形式)。它是碳的许多其他异形体的基本结构元素,如石墨、钻石、碳、碳纳米管和富勒烯。石墨烯有许多不同寻常的性质,它能有效地传导热量和电,它的导电性也非常高,而且几乎是透明的。它不仅具有令人难以置信的物理特性,还被广泛引用为每一重量基础上创造的最坚固的材料。例如,石墨烯在原子小的情况下,可以使处理器中的晶体管更加紧密地封装,并允许许多电子行业向前迈进一大步。

在未来的石墨烯时代,随着批量化生产以及石墨烯技术等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,未来,石墨烯将会在以下领域率先实现商业化应用:

01 基础研究方面的应用

石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质——因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。

02 传感器方面的应用

石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。

03 新能源电池方面的应用

新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源 汽车 电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

04 防腐涂料领域的应用

目前国内防腐涂料消费量近180万吨,占世界防腐涂料总消费量的40%以上。我国防腐涂料需求主要集中在船舶、石油化工、桥梁、集装箱等领域。涂料中添加石墨烯后,石墨烯能够形成稳定的导电网格,有效提高锌粉的利用率,同时,石墨烯涂层能在金属表而与活性介质之间形成物理阻隔层,对基底材料起到良好的防护作用。

近年石油化工、铁路交通、新能源、基础设施建设等更是蓬勃发展,为防腐涂料提供了广阔的市场空间。烯旺 科技 致力于对石墨烯涂料进行大规模商业和工业应用,为全球客户提供高效产品和全方位解决方案,打破中国重防腐涂料和核心原料严重依赖进口的局面,为涂料行业工业4.0提供坚实的基础。 作为石墨烯应用的开拓者,石墨烯防腐涂料和功能性涂料成为烯旺 科技 重点发展战略之一。烯旺 科技 整合集团投资的涂料资源,组织顶尖科研人员,率先开发了石墨烯复合陶瓷耐蚀树脂和涂料系列产品以及独特的石墨烯改性锌粉底漆等。

05 医疗 健康 领域的应用

今年3月,南京医科大学和烯旺 科技 共同研发的一项石墨烯无创治疗肿瘤新技术,被美国生物医学顶级期刊《Advanced Therapeutics》(先进医疗) 作为封面论文发表,这种无创、低副作用、低成本的全新治疗策略,或将成为治愈癌症的一大进步,有望成为未来肿瘤治疗的主流方法之一。

在慢性病的治疗上,石墨烯具有巨大的医疗潜力。石墨烯释放的远红外,作用于人体时会引发细胞原子与分子的共振,共振效应可将远红外线的热能传递到人体皮下的较深部分,作用于血管微循环系统,可加速血液循环,强化各组织间的新陈代谢,调理身体,促进慢性病的康复。石墨烯在医疗领域的发展令人惊喜,运用非药物疗法治病,一方面减少损伤,一方面节省费用,不仅让医疗技术变得更加成熟,提高医疗活动的效率和质量,更可以与传统医疗技术形成互补,同时降低医疗成本。借助这样治疗方式,才能不断让优质的医疗资源普惠到更多人群中。

石墨烯 科技 为医学领域带来了重大突破,更为人类 健康 贡献了非凡力量。烯旺 科技 在石墨烯医疗领域的更多应用,让更多科学以及医学专家坚信,在未来数十年内,更多现在无法解决的问题,石墨烯将发挥更大的作用。

总而言之,从现今石墨烯技术的实际应用以及技术水平来看,对石墨烯的很多发展已经有了决定性的进度,其中在防腐涂料及医疗 健康 领域,烯旺 科技 已发展到可以规模商业应用的阶段。我们相信,随着越来越多成熟石墨烯应用的加速落地,石墨烯,将重新定义世界,让我们一起期待世界的改变。

297 评论

相关问答

  • 石墨烯论文参考文献英文

    石墨烯(Graphene):是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,英国曼彻斯特大学物理学家安德

    月兮月兮 4人参与回答 2023-12-07
  • 有关石墨烯文献论文

    · 题名(Title,Topic)题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。 论文题目是一篇论文给出的涉及论文范围

    h071232003 5人参与回答 2023-12-08
  • 关于石墨烯论文题目

    1、题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示

    紫薯飘香 2人参与回答 2023-12-09
  • 石墨烯研究现状论文

    扭转双层石墨烯可视作两层石墨烯以一定的扭转角度堆叠而成,其表面会形成随扭转角度变化的摩尔周期势,其能带结构也受扭转角度的调制。例如,两层石墨烯的能带耦合会导致态

    s791144868 3人参与回答 2023-12-12
  • 石墨烯传感器技术论文参考文献

    石墨烯(Graphene):是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,英国曼彻斯特大学物理学家安德

    梦叶草2011 4人参与回答 2023-12-09