小红红黑黑
1.模型的选择和建模基本步骤
(1)建模基本步骤
1)用观测、调查、取样,取得时间序列动态数据。
2)作相关图,研究变化的趋势和周期,并能发现跳点和拐点。拐点则是指时间序列从上升趋势突然变为下降趋势的点,如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列。
3)辨识合适的随机模型,进行曲线拟合。
(2)模型的选择
当利用过去观测值的加权平均来预测未来的观测值时,赋予离得越近的观测值以更多的权,而“老”观测值的权数按指数速度递减,称为指数平滑(exponential smoothing),它能用于纯粹时间序列的情况。
对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用自回归(AR)模型、移动平均(MA)模型或其组合的自回归移动平均(ARMA)模型等来拟合。
一个纯粹的AR模型意味着变量的一个观测值由其以前的p个观测值的线性组合加上随机误差项而成,就像自己对自己回归一样,所以称为自回归模型。
MA模型意味着变量的一个观测值由目前的和先前的n个随机误差的线性的组合。
当观测值多于50个时一般采用ARMA模型。
对于非平稳时间序列,则要先将序列进行差分(Difference,即每一观测值减去其前一观测值或周期值)运算,化为平稳时间序列后再用适当模型去拟合。这种经差分法整合后的ARMA模型称为整合自回归移动平均模型(Autoregressive Integrated Moving Average),简称ARIMA模型(张文彤,2002;薛薇,2005;G.E.P.Box et al.,1994)。
ARIMA模型要求时间序列满足平稳性和可逆性的条件,即序列均值不随着时间增加或减少,序列的方差不随时间变化。但由于我们所关注的地层元素含量变化为有趋势和周期成分的时间序列,都不是平稳的,这就需要对其进行差分来消除这些使序列不平稳的成分。所以我们选择更强有力的ARIMA模型。
2.平稳性和周期性研究
有些数学模型要检验周期性变化是否为平稳性过程,即其统计特性不随时间而变化,我们可根据序列图、自相关函数图、偏自相关函数图和谱密度图等对序列的平稳性和周期性进行识别。当序列图上表现有明显分段特征时可采用分段计算法,若分段求得的每段频谱图基本一致或相似,则认为过程是平稳的,否则是非平稳的。
自相关函数ACF(Autocorrelations function)是描述序列当前观测值与序列前面的观测值之间简单和常规的相关系数;而偏自相关函数PACF(Partial autocorrelations function)是在控制序列其他的影响后,测度序列当前值与某一先前值之间的相关程度。
平稳过程的自相关系数和偏自相关系数只是时间间隔的函数,与时间起点无关,都会以某种方式衰减趋近于0。
当ACF维持许多期的正相关,且ACF的值通常是很缓慢地递减到0,则序列为非平稳型。
序列的自相关-偏自相关函数具有对称性,即反映了周期性变化特征。
3.谱分析
确定性周期函数X(t)(设周期为T)在一定条件下通过傅里叶(Fourier)级数展开可表示成一些不同频率的正弦和余弦函数之和(陈磊等,2001),这里假设为有限项,即:
洞庭湖区第四纪环境地球化学
其中,频率fk=k/T,k=1,2,…,N。
上式表明:如果抛开相位的差别,这类函数的周期变化完全取决于各余弦函数分量的频率和振幅。换句话说,我们可以用下面的函数来表示X(t)的波动特征:
洞庭湖区第四纪环境地球化学
函数p(f)和函数X(t)表达了同样的周期波动,两者实际上是等价的,只不过是从频域和时域两个不同角度来描述而已。称p(f)为X(t)的功率谱密度函数,简称谱密度。它不仅反映了X(t)中各固有分量的周期情况,还同时显示出这些周期分量在整体X(t)中各自的重要性。具体说,在X(t)中各周期分量的对应频率处,谱密度函数图应出现较明显的凸起,分量的振幅越大,峰值越高,对X(t)的整体影响也越大。
事实上,无论问题本身是否具有周期性或不确定性(如连续型随机过程或时间序列)都可以采用类似的方法在频域上加以描述,只是表示的形式和意义比上面要复杂得多。时间序列的谱分析方法就是要通过估计时间序列的谱密度函数,找出序列中的各主要周期分量,通过对各分量的分析达到对时间序列主要周期波动特征的把握。
根据谱分析理论,对一个平稳时间序列{Xt},如果其自协方差函数R(k)满足 |R(k)|<+∞,则其谱密度函数h(f)必存在且与R(k)有傅氏变换关系,即平稳序列 {Xt} 的标准化谱密度p(f)是自相关函数r(k)的傅氏变换。由于p(f)是一个无量纲的相对值,在许多情况下更便于分析和比较。
如何从实际问题所给定的时间序列 {Xt,t=1,2,…,n} 中估计出其谱密度或标准谱密度函数是谱分析要解决的主要问题。本书采用图基-汉宁(Tukey-Hanning)窗谱估计法。
王家姑娘0122
论文文献研究方法部分怎么写
论文文献研究方法部分怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的研究方法是很重要的,下面我和大家分享论文文献研究方法部分怎么写,一起来了解一下吧。
1、调查法
调查法是最为常用的方法之一,是指有目的、计划的搜集与论文主题有关的现实状况以及历史状况的资料,并对搜集过来的资料进行分析、比较与归纳。调查法会用到问卷调查法,分发给有关人员,然后加以回收整理出对论文有用的信息。
2、观察法
观察法是指研究者用自己的感官或者其他的辅助工具,直接观察被研究的对象,可以让人们的观察的过程中,可以拥有新的发现,还可以更好的启发人们的思维。
3、文献研究法
以一定的目标,来调查文献,从而获得关于论文的更加全面、正确地了解。文献研究法有助于形成对研究对象的一般印象,可以对相关资料进行分析与比较,从而获得事物的全貌。
论文研究方法最为典型的有调查法、观察法以及文献研究法,都是值得大家采用的方法。
论文写作中的研究方法与研究步骤
一、研究的循环思维方式
二、研究的路径
三、研究的分析方法
四、研究过程的设计与步骤
五、对传统研究思维模式的再思考
在我们指导研究生写论文的过程中,甚至于我们自己从事课题研究时,不禁让我们思考一系列有关研究的基本问题。例如,我们为什么要写论文?我们为什么要做研究?在我们探讨论文写作的过程中,我们是为了完成论文本身的写作,还是完成一个研究过程?写论文与做研究之间有什么联系与区别?如果论文写作应该反映一个研究过程,那么研究过程应该是什么样的?我们用什么样的方法进行研究?我们发现这些问题的解决,对指导研究生的论文写作有非常大的帮助。因此,本文就以我个人在从事教学课题研究和指导研究生完成论文中总结的一些有关研究方法与研究步骤的问题与大家交流共享。欢迎大家参与讨论。
世界上无论哪个领域都存在许多未知的事物,也存在着许多未知的规律。我们研究者的主要任务就是要不断地从大量的事实中总结规律,将之上升到可以指导实践的理论。然而理论也并不是绝对的真理,它也要在实践中不断地被修正,因此,就会有人对理论的前提和内容进行质疑,并提出新的猜想和新的思维。新的猜想和新的思维又要在实践中进行验证,从而发展和完善理论体系。我们探求未知事物及其规律就需要有研究的过程。这个过程,我们称之为研究的循环思维方式(Research Cycle)。用概念模型来表述就是[1]:
Facts —Theory—Speculation
事实——理论——猜想
上述从“事实”到“理论”,再进行“猜想”就构成了一般研究的思路。从事科学研究的人员既要侧重从事实到理论的研究过程,也同时在研究中要有质疑和猜想的勇气。而这一思路并不是一个终极过程,而是循环往复的过程。当猜想和质疑得到了事实的证明后,理论就会得到进一步的修正。
上述研究的循环思维方式就是我们通常说的理论与实践关系中理论来源于实践的过程。这个过程需要严密的逻辑思维过程(Thought Process)。通常被认为符合科学规律,而且是合理有效的逻辑思维方法为演绎法(Deduction)和归纳法(Induction)。这两种逻辑思维方式应该贯穿研究过程的始终。
另外,从知识管理角度看研究的过程,在某种意义上,研究的过程也可以被理解为,将实践中的带有经验性的隐性知识转化为可以让更多的人共享的系统规律性的显性知识。而显性知识的共享才能对具体的实践产生普遍的影响。研究者除了承担研究的过程和得出研究的结论之外,还要将这一研究的过程和结论用恰当的方式表述出来,让大家去分享。不能进行传播和与人分享的任何研究成果,对社会进步都是没有意义的。
我们认为,研究人员(包括研究生)撰写论文就是要反映上述研究过程,不断探索和总结未知事物及其规律,对实践产生影响。我们强调,论文的写作不是想法(idea)的说明,也不仅是过程的表述。论文的写作要遵循一定的研究方法和步骤,在一定的假设和前提下,去推理和/或验证某事物的一般规律。因此,对研究方法的掌握是写好论文的前提条件。
研究的路径(Approaches)是我们对某事物的规律进行研究的出发点或者角度。研究通常有两个路径(Approaches):实证研究和规范研究。
实证研究(Empirical Study)一般使用标准的度量方法,或者通过观察对现象进行描述,主要用来总结是什么情况(what is the case)。通常研究者用这种研究路径去提出理论假设,并验证理论。规范研究(Normative Study):是解决应该是什么(what should be)的问题。研究者通常是建立概念模型(Conceptual Model)和/或定量模型(Quantitative Model)来推论事物的发展规律。研究者也会用这种路径去建立理论规范。
我们认为,上述两种研究的路径不是彼此可以替代的关系。二者之间存在着彼此依存和相辅相成的关系。对于反映事物发展规律的理论而言,实证研究与规范研究二者缺一不可,前者为理论的创建提供支持和依据;后者为理论的创建提供了可以遵循的研究框架和研究思路。
针对上述两个路径,研究过程中都存在着分析(Analytical)过程,也就是解释为什么是这样的情况(Explaining why the case is as it is),而分析过程就需要具体的研究分析方法来支持。
[2]。然而,更多的学者倾向认为,定量与定性的方法问题更多的是从分析技术上来区别的[3]。因为,任何的研究过程都要涉及数据的收集,而数据有可能是定性的,也有可能是定量的。我们不能将定量分析与定性分析对立起来。在社会科学和商务的研究过程中既需要定量的研究分析方法,也需要定性的研究分析方法。针对不同的研究问题,以及研究过程的不同阶段,不同的分析方法各有优势。两者之间不存在孰优孰劣的问题。对于如何发挥各自优势,国外的一些学者也在探索将两者之间的有机结合[4]。
因此,定性分析方法是对用文字所表述的内容,或者其他非数量形式的数据进行分析和处理的方法。而定量分析方法则是对用数量所描述的内容,或者其他可以转化为数量形式的数据进行分析和处理的方法。一项研究中,往往要同时涉及到这两种分析方法[5]。定性分析是用来定义表述事物的基本特征或本质特点(the what),而定量分析是用来衡量程度或多少(the how much)。定性分析往往从定义、类推、模型或者比喻等角度来概括事物的特点;定量分析则假定概念的成立,并对其进行数值上衡量[6]。
定量分析的主要工具是统计方法,用以揭示所研究的问题的数量关系。基本描述性的统计方法包括:频数分布、百分比、方差分析、离散情况等。探索变量之间关系的方法包括交叉分析、相关度分析、多变量之间的多因素分析,以及统计检验等。定量研究之所以被研究者所强调,是因为定量分析的过程和定量结果具有某种程度的系统性(Systematic)和可控性(Controlled),不受研究者主观因素所影响。定量分析被认为是实证研究的主要方法。其优势是对理论进行验证(Theory Testing),而不是创建理论(Theory Generation)。当然,相对自然科学的研究,社会科学和商务研究由于人的因素存在,其各种变量的可控性被遭到质疑,因此,定量分析被认为是准试验法(Quasi-experimental approach)
定性研究有其吸引人的一面。因为文字作为最常见的定性研究数据是人类特有的,文字的.描述被认为具有“丰富”、“全面”和“真实”的特点。定性数据的收集也最直接的。因此,定性分析与人有最大的亲和力。恰恰也就是这一点,定性分析也具有了很大的主观性。如果用系统性和可控性来衡量研究过程的科学性。定性分析方法比定量分析方法更被遭到质疑[7]。然而,定性数据被认为在辅助和说明定量数据方面具有重要价值[8]。实际上,定性分析方法往往贯穿在研究过程的始终,包括在数据的收集之前,有关研究问题的形成、理论的假设形成,以及描述性分析框架的建立等都需要定性的分析过程,即对数据进行解释和描述等。如果遵循系统性和可控性的原则,那么定性分析方法在数据的收集过程中也有一些可利用的辅助工具,例如,摘要法、卡片法、聚类编码法等。在研究结论的做出和结论的描述方面,像矩阵图、概念模型图表、流程图、组织结构图、网络关系图等都是非常流行的定性分析工具。另外,从定性的数据中也可以通过简单的计算、规类等统计手段将定性分析与定量分析方法结合起来。
这里要指出的是,科学研究不能用想法(idea)本身来代替。科学研究需要有一个过程,而这个过程是用一定的方法来证明有价值的想法,并使之上升为理论;或者通过一定的方法来证明、创建或改进理论,从而对实践和决策产生影响。研究过程的科学性决定了研究成果是否会对实践和决策产生积极的影响效果[9]。
第五步、进行数据的处理和分析
数据的处理主要是保证数据的准确性,并将原始的数据进行分类,以便转化成可以进行进一步分析的形式。数据处理主要包括数据编辑、数据编码和数据录入三个步骤。数据编辑(Data Editing)就是要识别出数据的错误和遗漏,尽可能改正过来,以保证数据的准确性、一致性、完整性,便于进一步的编码和录入。数据编码(Data Coding)就是对所收集的第一手数据(例如对问卷开放式问题的回答)进行有限的分类,并赋予一个数字或其他符号。数据编码的主要目的是将许多的不同回答减少到对以后分析有意义的有限的分类。数据录入(Data Entry)是将所收集的第一手或者第二手数据录入到可以对数据进行观察和处理的计算机中,录入的设备包括计算机键盘、光电扫描仪、条形码识别器等。研究者可以用统计分析软件,例如SPSS等对所形成的数据库进行数据分析。对于少量的数据,也可以使用工作表(Spreadsheet)来录入和处理。
数据的分析就是运用上述所提到的定性或定量的分析方法来对数据进行分析。研究者要根据回答不同性质的问题,采取不同的统计方法和验证方法。对于有些研究,仅需要描述性的统计方法,对于另一些研究可能就需要对假设进行验证。在统计学中,假设的验证需要推论的统计方法(Inferential Statistics)。对于社会科学和商务的研究,一些研究是针对所获取的样本进行统计差异(Statistical Significance)的验证,最终得出结论是拒绝(Reject)还是不拒绝(Fail to Reject)所设定的假设条件。另一些研究则是进行关联度分析(Measures of Association),通常涉及相关分析(Correlation)和回归分析(Regression)。相关分析是通过计算来测度变量之间的关系程度;而回归分析则是为预测某一因变量的数值而创建一个数学公式。
值得注意的是,随着我们研究和分析的`问题越来越复杂,计算机和统计软件的发展使得多变量统计工具应用越来越广泛。如果多变量之间是从属关系,我们就需要从属关系的分析技巧(Dependency Techniques),如多元回归分析(Multiple Regression)、判别分析(Discriminant Analysis)、方差的多元分析(MANOVA,Multivariate Analysis of Variance)、典型相关分析(Canonical Analysis)、线性结构关系分析(LISREL,Linear Structural Relationships)、结合分析(Conjoint Analysis)等。如果多变量之间是相互依赖关系,我们就需要相互依赖关系的分析技巧(Interdependency Techniques),如因子分析(Factor Analysis)、聚类分析(Cluster Analysis)、多维尺度分析(Multidimensional Scaling)等。如果收集的数据有明显的时间顺序,我们不考虑变量之间的因果关系,而是重点考察变量在时间方面的发展变化规律,我们就需要时间序列分析(Time Series Analysis)。目前流行的统计软件,如SPSS对上述各种分析方法都提供非常好的支持。
第六步、得出结论,并完成论文
论文的撰写要结构合理、文字表达清楚确定,容易让人理解。形式上要尽量采取可视化的效果,例如多用图表来表现研究过程和研究结果。具体论文的撰写要考虑包含如下内容:摘要、研究介绍(包括背景、研究的问题、研究的目的)、研究的方法和步骤(样本选择、研究设计、数据收集、数据分析、研究的局限性)、研究的发现、结论(简要结论、建议、启示意义)、附录、参考文献。
针对社会科学和商务领域的问题研究,我们传统上所遵循的研究思维模式是:“提出问题、分析问题和解决问题”。我们承认这是一种创造性的思维过程。遵循这种思维方式可以帮助决策者快速找到问题,并解决问题。然而,用这一思维模式来指导研究的过程,容易使我们混淆研究者与决策者的地位,找不准研究者的定位。首先,这一研究思路和模式将问题的解决和问题的研究混在一起了。其次,没有突出,或者说掩盖了对研究方法的探讨和遵循。这种传统的思维方式是结果导向的思维方式。它忽略了问题的识别过程和研究方法的遵循过程。而从科学研究的角度看,问题的识别过程和研究方法的遵循过程是一项研究中非常重要的两个前提。问题的识别过程可以保证所研究的问题有很强的针对性,与理论和实践紧密联系,防止出现只做表面文章的情况,解决不了根本问题。研究方法的遵循过程可以保证研究结果的可靠性,使研究结果有说服力。当然,在此,我们并不是说明“提出问题、分析问题和解决问题”这一传统模式是错误的,也不否认研究的目的是指导实践。然而,我们觉得,这一传统研究思维模式太笼统,太注重结果导向,不足以说明科学的研究的一般方法和研究步骤。
在社会科学和商务研究中,运用这一传统的研究思路和模式来指导学生撰写论文,容易出现两个不良的倾向。一是使我们过于重视论文本身的写作过程,而忽略了论文写作背后的研究过程和研究方法。也就是只强调结果,不重视过程。在此情况下,论文的写作多半是进行资料的拼凑和整合。当然我们并不能低估资料的拼凑和整合的价值。可是,如果一味将论文的写作定位在这样的过程,显然有就事论事的嫌疑,无助于问题的澄清和问题的解决,也有悖于知识创造的初衷。特别是,既没有识别问题的过程,也没有形成研究问题和研究假设,甚至没有用任何可以遵循的研究分析方法,就泛泛对一个问题进行一般描述,进而提出感觉上的解决方案。这种研究结果是很难被接受的。第二个不良的倾向是上述传统的研究思路和模式使我们辨别不清我们是在做研究,还是在做决策。研究通常是在限定的一个范围内,在一定的假设前提下进行证明或推理,从而得出一定的结论。我们希望这个结论对决策者能产生影响。然而,决策者毕竟与研究者所处的地位是不一样的,考虑的问题与研究者或许一致,或许会很不一致。有价值的研究是要给处在不同地位的决策者(或者实践者)给予启示,并促其做出多赢的选择。因此,传统的研究思维模式缺乏研究的质量判定标准,缺乏系统性和可控性,也不具备可操作性,容易让研究者急功近利,盲目追求片面的终极的解决方案。
在指导对外经济贸易大学研究生的实践中,我们曾试图改变以往的传统思维模式,尝试让我们的研究生将论文的写作与研究过程结合起来,特别注重研究的过程和研究方法,并且要求在论文的写作中反映这些研究的方法与步骤。例如,2002届研究生万莲莲所写的《电子采购系统实施中的管理因素-摩托罗拉公司电子采购系统实施案例研究》硕士论文就是在这方面所做的最初探索。此论文的结构就分为综述、指导理论、方法论、数据分析,以及研究结论和启示等五个主要部分,运用了问卷调查和深度访谈等定性和定量的各种具体方法。其研究结论具有非常强的说服力,因为研究者并不限于第二手资料的收集、整理和加工,而是借鉴前人的理论研究框架,运用问卷定量调查等手段,遵循案例研究的方法,对第一手资料进行收集、处理和分析之后得出的结论,对实践具有较强的指导意义。相同的研究方法,我们又应用在其他研究生的论文写作过程中,例如2002届龚托所写的《对影响保险企业信息技术实施的主要因素的研究》、2003届王惟所写的《对中国铜套期保值现状的研究》,以及2003届马鸣锦所写的《中国银行业知识管理程度与网络银行发展程度的关系研究》等。通过论文写作,这些研究生的确掌握了一般研究的方法和研究的步骤。以上的研究结论对教学和实践直接有借鉴的意义。在教学和咨询过程中,其方法和结论都得到了肯定。据多方反馈,效果还是非常好的。
【注释】:
[1]这是笔者在美国芝加哥自然博物馆看恐龙展览时了解的美国科学家的基本研究思路而得到的启示。
[2] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P303。
[3] Bryman, A. (1988), Quality and Quantity in Social Research. London: Unwin Hyman.我们发现许多文献资料将定量与定性分析方法称为定量与定性技术(techniques)
[4] Cook, T.D. and Reichardt, C.S. (1979) Qualitative and Quantitative Methods in Evaluation Research. Newbury Park and London: Sage. Ragin, C. C. (1987) The Comparative Method: moving beyond qualitative and quantitative strategies. Berkeley, Cal.: University of California Press.
[5]Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P307。
[6] John Van Maanen, James M. Dabbs, Jr., and Robert R. Faulkner, Varieties of Qualitative Research (Beverly Hills: Calif.: Sage Publications, 1982), P32
[7] 这是因为社会科学和商务研究中包括了人的因素,而人本身作为分析者具有自身的缺陷。例如:数据的有限性、先入为主的印象、信息的可获得性、推论的倾向性、思维的连续性、数据来源可靠性、信息的不完善性、对信息价值判断误差、对比的倾向性、过度自信、并发事件与相关度的判断,以及统计数据的不一致性等。上述缺陷的总结与分析来源于Sadler, D. R. (1981) Intuitive Data Processing as a Potential Source of Bias in Educational Evaluation. Educational Evaluation and Policy Analysis, 3, P25-31。
[8] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P371。
[9] Ronald R. Cooper, C. William Emory (1995, 5th ed) Business Research Methods, IRWIN, P352
清晨依恋静雪
时间序列数据挖掘研究论文提纲 论文摘要: 随着计算机与信息技术的普及和大容量存储技术的发展,人们在日常事务处理和科学研究中逐渐积累了大量宝贵数据,这些数据背后蕴藏着对决策有重要参(略).如何从这些历史数据中提取需要的信息正成为数据挖掘领域(略)在现实生活中,时间是数据本身固有的因素,在数据中常常会发现时序语义问题.时序数据的出现使得有必要在数据挖掘中考虑时间因素.时序数据在现实生活中广泛存在,如金融市场、工业过程、科学试验、医疗、气象、水文、生物信(略)储规模呈现爆炸式增长.因此对时间序列数据挖掘问题进行深入研究是非常必要和富有挑战性的. 从20世纪末开始,复杂网络的研究已经渗透到生命科学、数理学科和工程学科、社会科学等众多不同的领域.对复杂网络的研究,已成为科(略)个极其重要的富有挑战性的课题.其研究热点之一是寻找复杂网络中的社团结构,事实上这个过程就是一个聚类的过程,所以研究复杂网络社团划分新算法,对于时间(略)重要意义. 本文结合时间序列数据挖掘和复杂网络理论,开展了如下的研究工作: 综述了时间序列数据挖掘和时间序列模式挖掘的研究现状,指出了研究的现实意义.介绍并分析了最具代表性的... With the popularity of computer and information technology,and the great(omitted)nt of storage technique of high capacity,,a great amount of data is accumulated in daily work and in s(omitted)research.Much potentially useful knowledge is hided behind data.Today how to manage and use(omitted)e series data efficiently and extract useful information is an important problem in dat(omitted)ime is the inherent attribute of data,so we should take time into account when mining association rules.Time serie... 目录:摘要 第4-5页 Abstract 第5页 1 绪论 第8-16页 ·选题背景 第8-9页 ·国内外研究现状 第9-14页 ·数据挖掘研究现状 第9-11页 ·时间序列数据挖掘的研究现状 第11-12页 ·序列模式挖掘研究现状 第12页 ·频繁趋势挖掘的研究与发展 第12-13页 ·聚类问题的研究现状 第13-14页 ·本文主要研究内容 第14-16页 2 研究背景 第16-24页 ·数据挖掘与知识发现 第16页 ·数据挖掘的起源 第16-17页 ·引发数据挖掘的挑战 第16-17页 ·相关领域对数据挖掘的`推动 第17页 ·数据挖掘的过程 第17-18页 ·数据挖掘的分类 第18-20页 ·数据挖掘的方法 第20-22页 ·数据挖掘系统 第22页 ·数据挖掘软件的评价 第22-24页 3 时间序列数据挖掘 第24-36页 ·时间序列 第24-25页 ·时间序列概念 第24页 ·时间序列分类 第24-25页 ·时间序列数据挖掘研究 第25-28页 ·序列模式挖掘 第28-34页 ·问题描述 第28页 ·序列模式挖掘 第28-29页 ·序列模式挖掘算法分析与比较 第29-34页 ·时间序列聚类分析 第34-36页 ·复杂网络社团划分方法 第34页 ·时间序列聚类与复杂网络社团结构划分 第34-36页 4 模糊频繁模式挖掘研究 第36-44页 ·趋势分析 第36页
顾名思义,时间序列就是按照时间顺利排列的一组数据序列。时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。该技术有以下三个基本特点: 1.假设事物发
PPT的安排第一页:论文题目,作者,指导老师等第二页:摘要,即你的论文的中心思想第三页:目录,表示你论文的思路、框架结构然后,逐项论述。中间可穿插系统演示。如果
学术堂最新整理了二十条好写的统计学毕业论文题目:1.MMC排队模型在收费站排队系统中的应用2.财政收入影响因素的研究3.城市发展对二氧化碳排放的影响4.高技术产
1.模型的选择和建模基本步骤 (1)建模基本步骤 1)用观测、调查、取样,取得时间序列动态数据。 2)作相关图,研究变化的趋势和周期,并能发现跳点和拐点。拐点则
曹刿论战、唇亡齿寒,都是春秋时的事情。蔡桓公是前400~前357年,齐威王是前378~前320年。所以我认为扁鹊见蔡桓公应在邹忌讽齐王纳谏之前。南辕北辙不好判断