大大的蚂蚁啊
cornerNer论文链接: github: CenterNet论文链接: github: CornerNe-Lite论文链接: github: 所谓基于关键点进行目标检测,其实就是使用one-stage网络将目标边界框检测为一对关键点(即边界框的左上角和右下角)。通过将目标检测为成对关键点,就可消除现有的one-stage检测网络中对一组anchors的需要,这个最近火热的anchor-free也是不谋而合。接下来,先简单介绍下CornetNet和CenterNet这两个基于特征点的目标检测网络。最后对CornerNet-Squeeze做个简单介绍! CornerNet网络的整体思路是,首先通过Hourglass Network网络进行特征提取,紧接着将网络得到的特征输入到两个模块: Top-left Corner pooling 和 Bottom-right Corner pooling 提取关键点的特征,对于每个Corner Pooling模块都会进行目标框的左上角关键点和右下角关键点的类别分类( Heatmaps ),并找到每个目标的一对关键点( Embeddings ),以及减少基于坐标回算目标目标位置时的偏置( offsets )。网络的整体结构图如下: 很显然,CornerNet的核心是四个部分: 最终,如下图所示,上半支路的网络结果如下所示,网络最终是由两条支路组成的。 CenterNet网络主要是基于CornerNet网络存在的问题,而提出的基于关键点目标检测的网络。其实现了目前为止在one-stage系类算法中最高的MAP。CenterNet的作者发现,CornerNet是通过检测物体的左上角点和右下角点来确定目标,但在此过程中CornetNet使用corner pooling仅仅能够提取到目标边缘的特征,而导致CornetNet会产生很多的误检。基于此,CenterNet利用关键点 三元组 即 中心点、左上角关键点和右下角关键点 三个关键点而不是两个点来确定一个目标,使得网络能够获取到目标内部的特征。而CornerNet在论文中也说道了,约束其网络性能最重要的部分是关键点的提取,因此CenterNet提出了 Center Pooling 和 cascade corner Pooling 用来更好的提取本文提出的三个关键点。 作者基于Corner Pooling的系列思想,提出了Center Pooling的思想,使得网络提取到的中心点特征能够更好的表征目标物体。 最终,CenterNet在CornerNet的基础上增加了中心点的预测,以及修改了关键点特征的提取方式,大大减小了网络的误检,并且实现了one-stage系列算法中的最好效果。 普林斯顿大学在4月19号提出了两种更高效的基于关键点的目标检测算法,分别为: CornetNet-Saccade 和 CornetNet-Squeeze ,若将两种策略结合则称为 CornerNet-Lite 。以下是Cver对这两个网络的介绍,个人感觉写的很好,我就不造轮子了: 最终我最感兴趣的网络CornerNet-Squeeze和YOLOv3进行对比,达到了如下图所示的效果。 然而,就在我学习并总结这篇文章的过程中,我发现CornerNet-Squeeze是基于CornerNet改进的,但正如上文中介绍CenterNet的时候提到过的CornerNet所具有的那些弊端,我总觉得CornerNet-Squeeze在误检的部分不一定会很优秀,所以接下来就是看源码阶段了,希望CornerNet-Squeeze能够不负我望哈~
梧桐春雨
对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。
R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:
在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于0.5,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。
框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。
Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:
RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。
为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:
回归的target可以参考前面的R-CNN部分。
notes
为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:
为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:
在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:
自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。
对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。
与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。
与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。
不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。
由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。
为此,作者使用了RoIAlign。如下图
为了避免上面提到的量化过程
可以参考
作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:
整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图
cornerNer论文链接: github: CenterNet论文链接: github: CornerNe-Lite论文链接:
⑴ 你要什么?要论文?还是要创意?还是想请人帮你修改或指导写此类论文?⑵ 此外,什么叫药品质量验收。应该是药品质量分析,或药品质量检验吧。⑶ 我通常审很多
【5】50套毕业论文答辩PPT模板.rar免费下载 链接: 幻灯片模板即已定义的幻灯片格式。PowerPoint和Word、Excel等应用软件一样,都是Mi
操作方法如下: 操作设备:戴尔笔记本电脑 操作系统:win10 操作程序:百度浏览器v8.2、中国知网 1、首先找到知网官方网站,如下图所示: 2、找到“学术不