海上花的故事
探究三角形的等积分割线 如何将一个三角形面积分割成两个相等的部分,是我们已熟知的问题,只要沿三角形的中线,即可把三角形分割成面积相等的两个部分,许多同学认为,这样的分割线只有三条,但是,这样的分割线到底有多少条呢? 问题1:请用一条直线,把△ABC分割为面积相等的两部分。 解:取BC的中点,记为点D,连结AD,则AD所在直线把△ABC分成面积相等的两个部分。 大家知道,这样分割线一共有三条,分别是经过△ABC的三条中线的直线,能把△ABC的面积分成相等两部分。除了这三条以外,还有很多种,并且对于△ABC边上任意一点,都可以找到一条经过这点且把三角形面积平分的直线。 问题2:点E是△ABC中AB边上的任意一点,且AE≠BE,过点E求作一条直线,把△ABC分成面积相等的两部分。 解:如图2,取AB的中点D,连结CD,过点D作DF‖CE,交BC于点F,则直线EF就是所求的分割线。 证明:设CD、EF相交于点P ∵点D是AB的中点 ∴AD=BD ∴S△CAD=S△CBD ∴S四边形CAEP+S△PED=S四边形DPFB+S△PCF 又∵DF‖CE ∴S△FED=S△DCF(同底等高) 即:S△PED=S△PCF ∴S四边形CAEP=S四边形DPFB ∴S四边形CAEP+SPCF=S四边形DPFB+S△PED 即S四边形AEFC=S△EBF 由此可知,把三角形面积进行平分的直线有无数条,而 且经过边上任意一条直线,运用梯形对角线的特殊性质,很容易作出这样的分割线。 那么,这些分割线会不会交于某特定的一点呢? 大家知道,三角形的三条中线都把三角形分成面积相等的两个部分,而三条中线交于它的重心,如果这些分割线相交于一点,那么这点必定是三角形的重心。 问题3:已知:如图3,在△ABC中,G是△ABC的重心,过点G作EF‖BC交AB于点E,交AC于点F,求证:S△AEF=S△ABC. 证明:延长AG,交BC于点D ∵点G是△ABC的重心 ∴AG:AD=2:3 又∵EF‖BC,∴△AEF∽△ABC 由本题可得:过AB边上的点E,经过重心G的直线,EF把三角形面积分为4:5两部分,直线EF并不是三角形的等积分割线。而根据问题2,可以找到一条过点E把三角形面积平分的一条直线,这条直线必不过重心G。 综上可知,三角形的等积分割线有无数条,而且任意给定边上一点,都可以作出相应的等积分割线,且只有一条,所有的分割线并不相交于三角形的重心。
我不是水蜜桃
《我的数 学 小 论 文——探索平行四边形的奥秘》今天,老师给我们布置了一个任务,要求我们做一个图形道具,比如做一个活动的平行四边形,找找它的规律。回到家,我用剪刀把牙膏盒剪成四个长条,当成四边形的四条边(两个对边一样长),再用四个暗扣把每两个边的两头固定到一起,做成了一个活动的平行四边形。我拿着自己做的道具,左拉拉右拉拉,仔细观看它的图形变化(如下面的图1、图2)。经过观察,我从中发现了一些奥秘,这个活动的平行四边形无论怎么变换形状,都还是一个平行四边形。我感到很奇怪,心想;随着这个图形的变换,它的周长和面积会不会也发生变化呢?我仔细地思考着,想不明白。于是我又重新变化图形,一边变化着图形,一边又仔细地观察起来。我发现在变化的过程中,它的四条边长并没有变化,也就是说,图形的周长没变,可面积就不一样了,把Ab边向右移动,AE就随着图形而逐渐变化,平行四边形的面积等于bC *AE,图形的面积也就随之而变。我用尺子量了量,不管怎样变化,图2的这个平行四边形中始终是Ab>AE,于是我得出这样一个结论,无论图形怎样变,都会是这样的:⑴由于四条边长不变,图形的周长是不变的;⑵两条对边不但相等,而且始终都保持平行的状态;⑶无论怎样变化,它都是一个平行四边形。⑷由于底边不变,∠AbC的度数越接近90度,图形的高越长,它的面积也逐渐越大;当∠AbC的度数大于90度而小于180度,图形的高也越来越短,它的面积也就越来越小。当∠AbC的度数等于90度时,图形的高是最长的,此时它的面积也是最大的。通过这次数学小实验,不但锻炼了我自己的动手能力,而且让我对平行四边形的理解也越加深刻了,也使原来复杂的问题,变得更加通俗易懂了,更增添了我对数学的兴趣和学好数学的信心。
我也正好在做这个作业,不过为什么不能超出初一生的思想和知识??????
当前我国周边安全形势及走向一、摘要:1、 我国的周边安全形势概况(一) 新中国成立后,我国面临的周边安全形势非常严峻(二) 改革开放以来,我国面临的国内外安全形
《数学新课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”所以,在数学教学中,就要着重引导学
《数学新课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”所以,在数学教学中,就要着重引导学
做了好半天呢,加点分吧~