心菲殿下
只有这个了,凑合吧。把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=〈@①,3/10=〉@②;可能是8吗?不可能。 因为1/ 8=〉@①,3/8=〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=……=@①;3/9=1/3=1÷3=……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=…… @④=6/9=2/3 验证:2/3=2÷3=…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=〈@⑤,13/100=〈@⑥。可能是98吗?不可能。 因为12/98≈〉@⑤,13/98≈〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=……=@⑤; 13/99=13÷99=……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=…… @⑧=18/99=2/11,验算:2/11=2÷11=…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法。 字库未存字注释: @①原字为,1上加. @②原字为,3上加. @③原字为,4上加. @④原字为,6上加. @⑤原字为,12上加. @⑥原字为,13上加. @⑦原字为,15上加. @⑧原字为,18上加.
静妙奔奔1123
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授
的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化
思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联
想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互
用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新
精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问
题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看
书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
a.记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
b.拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
c.建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误
原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
d.熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化 或半自动化的熟练程度。
e.经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
f. 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
g. 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩 固,消灭前学后忘。
h. 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解 题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
我的发现 同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。
如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532*5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532*5的积了。
知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗? 同样的发现我还有:一个数乘只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了! 我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。
我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。
这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。 同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。
伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧! 谈谈对零的认识 零看上去很单调,就是没有,其实它非常地丰富,它隐藏了许多。在数学中零非常特殊,不管做什么题,你应该考虑零。
在几何中,“0”经常被作为记号。 “0”的特殊源于在一些概念或题里,比如每个有理数都有倒数,“0”却没有,有理数分为正数、负数。
“0”,一个数就分为一类,这不特殊吗?在除数里,只有零不能作除数。零作被除数,不管除以什么数(“0”除外)都得零。
往往我们会忽视零,但它却起着重要的责任。如,问等于几?有些人就不能联想到“0”。
在数数时,有人就会忘掉零。如:不大于5不小于-5的整数有几个?有人就会定有8个。
其实还有0。如:有哪些数的绝对值不大于本身?那就是正数和零(也可以称之为非负数)。
零在生活中更量五彩斑斓。在期末后开家长会,老师那里登记的犯错本给家长看时,我们都希望自己的那一格记着“0”,这表示我们没有犯过错,家长高兴,我们高兴。
但是在卷子上我们都不希望看到这个数或接近这个数的整正数,否则回家的日子就难过了。在比赛中,谁都不希望得到“0”。
零是丰富的。我认为零在题中是陷井,大家以后做题时应考虑零。
零在不同的场合也能使人的情绪改变。它是美妙而又丰富的。
对0的认识 0是一个奇妙的数字,又是一个中学生经常遇见的“老朋友”了,计算,概念,都要遇见。 首先,0表示什么也没有,简直可称得上是数字里面的“沙漠”,0也是一个奇怪的数字,放在体积、面积、重量、速度、路程等所有单位里面,都表示没有,以表示时间、一个人的年龄、赛跑的刚开始、起点。
在数学王国数字库自然数里面,以有0的身影,它当然是最小的。没有0,便没有一毓的自然数,因为0是自然数的起点。
在计算里,0乘以任何一个数,包括负数、分数、0都,0的绝对值也等于0,在有理数中,它的绝对值是最小的,0除以任何一个数都,0加上一个数,仍得那个数,如:0+1=1,0+。0减去一个数,得那个数的相反数,如:0-1=-1,0-87=-87。
在数轴中,0为原点,也为边界线,把正负两大数分开,0为什么奇妙呢?因为0既不是正数,也不是负数,它只是一个整数,当0和正数在一起时,叫非负数,和负数在一起时,叫非正数,数轴上,0又为我们判断正负数大小时提供了极大的方便,右边为正数,左边为负数,右边的数始终比左边大,说明正数大于负数,0大于负数,却小于正数。 在几何中,0度角表示一条射线,它并没有角,也没有度数,0平方米,表示没有面积,0米长,表示没有高度。
0斤重,表示没有质量,0立方米,表示没有体积。 在地形中,0表示海平面,0以上表示高出海平面,0以下表示低于海平面,中国新疆有一155米的盆地,它是低于海平面155米,中国西藏有8848米的珠峰,它高于海平面8848米。
今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(毫升),前后两次水位刻度之差就是这一部分筷子的体积,即立方厘米。
数学课标特别强调“学生是数学学习的主人”,“学生要主动地进行观察、实验、猜测、验证、推理与交流等数学活动”,强调学生学数学的重要方式是“动手实践、自主探索、合作交流”,与以往的大纲不同,课标把总体目标划为“知识与技能”、“数学思考”、“解决问题”、“情感与态度”四个方面,而后三个方面的目标我们以往忽略了或者说重视得不够。参加新课标的教改实验后,我常常思考怎样培养学生数学思考的意识和能力及解决问题的意识和能力这2个问题,反思自己的教学实践,发现让学生写写“数学作文”对上述两方面有很大益处。我曾尝试着让学生写过一些数学观察日记、数学小论文,我把孩子们写的这些与数学有关的文章称为“数学作文”,下面谈谈我教学生写“数学作文”的体会。
“数学作文”写些什么呢?当然应与数学有关。在学数学时有什么感受、有什么疑问、有什么创新,可以在日记中记下来;在生活中看到的某些事物、现象,能联想到学过的数学知识、方法,也可以在日记中记下来。除了写日记,老师还可以提出一些小课题让学生写写小论文,比如:《怎样求不规则物体的体积》、《我家距学校有多远》、《买哪种最划算》等,让学生运用讨论、实验、调查、计算等方法进行探索、研究,写出小论文。“数学作文”一般来说不能用课堂上的时间来写,而要利用课外时间来完成。
在指导学生写“数学作文”的实践中,我发现写“数学作文”有以下好处:
一、能培养学生数学思考、解决问题的意识和能力。
数学是对客观世界数量关系和空间关系的一种抽象,小学生的抽象思维发展毕竟有限,所以很多学生认为数学难学。其实数学来源于生活又服务于生活,数学老师应尽可能引导学生把抽象的数学和丰富多彩的生活联系起来,这样一可以化抽象为形象,二可以避免学与用的脱节。让学生写“数学作文”能增强学生数学思考的意识,促使学生用数学的眼光去看生活中的问题,用数学方法来分析生活问题、解释生活现象,解决实际问题。我有一个学生在日记中提到在商场买洗衣粉时看到有不同的牌子,同一个牌子又有几种不同的包装,价格都不相同,从而想:买哪一种最划算?她运用所学的数学知识,通过一番计算后作出决定,心里非常高兴,因为学过的知识派上了用场,很有成就感。如果学生能坚持这样记日记,经常去观察数学与生活的联系,不但能逐渐改变“数学既枯燥又难学”的看法,还能提高运用数学知识解决实际问题的能力。
二、能转变学生的学习方式,增强实践能力。
我经常让学生写小论文,有时让学生自己找课题,有时提供一些课题让学生自由选择。在做课题的过程中,学生反复做实验、做调查,反复与他人讨论,实践能力得到极好的锻炼。比如写《怎样求不规则物体的体积》、《我家距学校有多远》、《请拧紧水龙头》(以水龙头漏水为起因谈节水)这样的论文,首先要做一些实验,得出相关数据才能写好。而要写《买哪种最划算》、《警惕白色污染》这类论文,则需要事先做一些调查,收集很多数据才能写好。写这些小论文的过程中,学生实际上也就是采用了“动手实践、自主探索、合作交流”等方式学习。
三、是渗透德育的一个极好途径。
写《请拧紧水龙头》、《警惕白色污染》这类小论文,学生通过实验、调查、计算,得出了一些有说服力的数据,自然而然地想到了要节约用水、保护环境。学生将这些数据、感受写进小论文,公布出来,就起到了宣传环保的作用。这些通过自身参与感受到的东西,对孩子们的教育功效是其他任何形式的教育所无法比拟的。
四、使学生养成良好的学习习惯。
写“数学作文”促使学生勤于观察、勤于思考。为了写好这些作文,他们还要学习做实验、做调查、提出自己的观点并论证自己的观点,学习与人合作、与人交流。经常写这样的作文,学生就能逐渐形成勤观察、勤思考、勤动手的良好习惯。“好习惯的报酬是成功”。这些习惯的养成,对于学生的后续发展有着不可估量的重要作用。
总之,我们应尽量使学生积极主动地发展,使不同的人在数学上都得到不同的发展,体验成功。对于中高年级的学生,不妨让他们写写“数学作文”,这将使他们更“爱”学数学,更“会”学数学。
作文如何学好数学
1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。2、及时了解、掌握常用的数学思想和方法学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。3、逐步形成 “以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。4、针对自己的学习情况,采取一些具体的措施a.记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中b.拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。c.建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。d.熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化 或半自动化的熟练程度。e.经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。f. 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。g. 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩 固,消灭前学后忘。h. 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解 题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
1、写心得体会。学生在学数学、上数学课后或做数学作业时有什么想法、有什么体会、有什么启发、有什么发现等,都可以在日记中写上。例如—位学生在日记中写道:“今天在上数学课前,我预习了老师要上内容,对不理解的地方做上了记号。上课时,我对不理解的地方特别注意,经过老师和同学的讲解,使我弄懂了那个难题。今天做作业时,就感到很容易。经过老师的批阅,今天我所做的作业全对。这使我懂得课前预习的确很重要,真是磨刀不误砍柴工。今后我要重视各科的课前预习,使自己学得轻松点。” 2、写疑难问题。学生在学习数学、做数学题时碰到疑难问题不能解决时,可以把这些难题写在日记中,请求老师帮助解决。在上数学课时,对老师讲解的例题,总是听不明白, 疑惑不解、又不敢发问,也可以写在日记中,请求老师课余给予个别辅导等等。有位学生在日记中写着:“老师:今天不知为什么,您讲的数学例题,我总是听不进去,所以今天的数学作业有好几题做不来。为了完成您布置的学习任务,我只好到同学那里抄了几个答案。实在对不起。您如果有时间能不能再给我辅导一下。” 3、写意见建议。学生对数学老师的上课、布置作业、批改作业、课外辅导、考试评价等方面有什么意见和建议可以写在日记上;对数学老师另有看法,或者有什么心里话要对老师说,也可以写在日记上。有位学生就在日记中这样写到:“老师布置的作业实在太多了,既要做数学课本上的作业,又要做数学练习册上的作业,压得我简直透不过气来了。为了完成作业,我只好顾不上课余休息,埋头猛做。这样,做错的题就比较多。为了学习质量,老师是否适当布置作业,让我们精益求精。如果可以的话,真是谢天谢地 ” 4、写创新发现。学生在学数学、做数学作业时,有什么新发现、新想法、新主张、新方法、新创意等等,都可以写在日记上。—位五年级的学生在日记中写道;“通过多年的摸索,我感觉到事先预习老师下节课要上的内容,看看自己哪些地方已懂了,哪些地方还不懂,做上记号,待老师上课时提出讨论,直至弄懂为止。这对学数学很有好处。希望老师课后少布置作业,宁愿让我们有更多的时间预习下节课的内容更好。”您已经评价过!好:0 您已经评价过!不好:0 您已经评价过!原创:0 您已经评价过!非原创:0 检举
四明 2008-08-06 13:28
满意答案
怎样才能写好数学日记?从与他人不同的角度发现数学的奥妙,发现生活中使用的数学怎么写数学日记?把生活中用到的数学写出来,或者解题的方法,对数学发出的疑问,以及学到的新数学知识,今天学的数学知识总结一下,把你还没有弄懂的归纳一下都可以五年级数学日记参考今是星期六,我和爸爸妈妈一起看望奶奶。当我们来到奶奶家时,发现姑姑和奇奇也在。奇奇是我表弟,上四年级了。我们在一起做游戏,玩的十分开心!“咦!上个星期你们怎么没来呀?”,妈妈在问姑姑,“我们来了呀,并且5天来一次”。姑姑满脸的疑惑。“我们7天来一次,时间不同,所以上星期没有相遇。”姑姑说:“思怡和奇奇,你们来算一算,我们最少再过多少天可以相遇一次?”姑姑的问题一下子把我问蒙了,左思右想,怎么也想不起来。猛然间我想起了我们刚学的最小公倍数。要求我和姑姑最少多少天再相遇,只要知道姑姑来奶奶家的天数和我们每次来奶奶家的天数。姑姑5天来一次,我们7天来一次,求5和7的最小公倍数是35,“35天后我们就又可以相遇了”,我脱口而出。奶奶和姑姑都夸我,怡怡真聪明。最后我们依依不舍的告别了。
生活中我们都离不开数学,比如买菜的几斤几两、日历上的几年几月几日,还有一些数学的等式都与数学有关。今天,我要向大家介绍几题数学题吧!
早上起床,当我们睁开朦朦胧胧的双眼,第一眼就向闹钟看去,闹钟上的数字,就是生活中的数学。因为我们一天的时间是时针转24圈、分针转1440圈、秒针转86400圈得来的。那24*30=一个月,一个月*12=一年,这就是时间的数学。
平时,我们都要去的菜市场里也离不开数学。星期天,妈妈带我去买菜,在一个卖白菜的摊子前,妈妈和卖白菜的人讨价还价起来,最后,以一斤八角钱的价格买三斤,送一斤的口头协议买了三斤大白菜。妈妈问我:“我这样买菜,每斤便宜了多少钱?”我想了想,对妈妈说:“便宜两角。”若得卖菜阿姨直夸我。回到家里,妈妈问我:“你是怎么算的?”我笑了笑说:“我先算3斤大白菜*0。8元=2元4角,再算买3斤送1斤=4斤,然后再算2元4角÷4斤=6角,那8角-6角不就等于2角了吗!”这就是生活中的单价*数量=总价。
我平时都要跟着妈妈乘公共汽车去新华书店,公交车一分钟行驶一千米,大约二十分钟就到了。妈妈问我:“我们家离新华书店距离大约有多少千米呀?”我一边用手指比划着一边对妈妈说:“大约二十千米。”这就是生活中的速度*时间=路程。
“勤动脑+勤动手=成功”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。我总要先读懂题目,掌握其中的关系,列出算式,一步步地解答。有时,还要通过画图的方式,来理解题目。
其实,生活中还有许多奇妙的数学,在等着我们去寻找、去发现。
数学日记
数学不仅仅是一种重要的工具或方法,也是一种思维模式;数学不仅仅是一门科学,也是一种文化;数学不仅仅是一些知识,也是一种素质。如何品味数学,欣赏数学,即从文化的角度看待数学,常常被人们所忽视。正如丁石孙教授所说:“我们长期以来,不仅没有认识到数学的文化教育功能,甚至不了解数学是一种文化。这种状况在相当程度上影响了数学研究和数学教育。”让我们回顾一下,学了十几年的数学,是否认真仔细地审视过数学?是否清楚自己对数学有什么情感?是否仔细品尝过数学的滋味?是否有了更好的条件来换个角度考察数学?在学习数学的过程中,苦乐相伴,悲喜共存,爱恨交加,忧惧与期待并行,无奈与憧憬同在……
希望可以帮到你,祝你学习进步哦。^_^
数学作文-------转一转就是数学
数学,无处不在;数学是与生活同行;与我们同行,但愿数学与生活结为一体。
今天,我闲着没事做,便和好友小贤比赛做小旗,想打发打发时间。我们先找来两张长为8厘米,宽为4厘米的长方形硬纸板。我们每人各拿了一张,开始认真地做起了小旗。我做得较快,就在那得意地摆弄小旗,我把小旗拿在手里转啊转,我惊讶地发现:居然转出了一个圆柱形。我把这个发现告诉了他。他做好后,也试了一下,是了一定不会错。小贤笑这说:“我们来算一算旋转出来的圆柱形的体积吧!”“好吧。”我不假思索地答应了。我俩便认真地开始计算起来,我的圆柱的体积是:4*4**8=;小贤的圆柱的体积是:8*8**4=。我疑惑不解地说:“为什么我们用的是两张完全相同的长方形纸,可旋转出来的圆柱的体积却不相等呢?”小贤抓了一把头皮,慢条死理地说:“你瞧,我是以长为轴旋转的,那么长便是旋转出来的圆柱的高,宽便是旋转出来圆柱的半径。”“对对对,而我是以宽为轴,所以宽就是圆柱的高,长就是圆柱的半径。我俩旋转出来的圆柱的高和半径都不相等,所以体积自然也就不相同喽!”我补充说。“耶!”果真如此两个巧妙的圆柱就显现在我们的手中。
我想以后还会有更多的“圆柱”在我们手中转呢!你也来吧……
今天,由于爸爸妈妈上班,妈妈就把我送到新华书店,书店里人头涌动。一进门,一股热气迎面扑来,这种热闹的场面,使我一下子冲动起来。书架旁伏满了人,十分拥挤,要想看得清,就要往里挤。往日“文明”的我也顾不上什么礼让了,一有空子就钻。我完全不顾来自后面的挤压,尽兴地挑选书籍。一会儿,我终于选到了我看的书。挤出人群,我发现,一位看着像老师模样地抱了好多书。我有礼貌的问老师需要帮忙吗?老师爽快的答应了。老师,您是给学生挑选的书吗?是呀!你们班有多少学生?老师没有直接告诉我,反而问我,让我猜猜看。每人6本则剩下41本,每人8本则差29本,有多少学生?多少本书?这一下,可把我给问住了。我想了想,突然有了点思路,两次的分法不同,那就导致练习本相差了41+29=70(本),每人分6本变成8本,又相差了8—6=2(本)。哦!忽然,我明白,总差额知道了,又知道了每人的差额,那不就求出总人数了?我很快求出了学生有35人,求出了学生的人数,那书本就更好求了,6*35+41=251(本)我把答案告诉老师,老师说:“你真棒!完全正确!”
其实数学挺有意思的,特别是当你通过努力得到正确答案的时候,心里的那个美呀,真是说不出来的高兴!今后我还要在数学的城堡里探索、发现,不断体会成功带来的快乐。
加勒B海盗
高数论文什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳
密果儿颖颖
一、与时俱进的更新教学理念教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的总结和引导。二、营造良好的教学氛围在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。三、充分保证学生的主体地位在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。四、积极完善教学方法俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。五、将现代化技术引课堂随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。
在日常生活或是工作学习中,大家对作文都不陌生吧,写作文是培养人们的观察力、联想力、想象力、思考力和记忆力的重要手段。还是对作文一筹莫展吗?下面是我为大家整理的科
安全通常指人没有受到威胁、危险、危害、损失。人类的整体与生存环境资源的和谐相处,互相不伤害,不存在危险的隐患,是免除了不可接受的'损害风险的状态。为了让您在写的
在日常生活中,我们会发现有很多有趣的 科普知识 ,那你知道科普知识有哪些呢?而我们所知道的科普知识是一种用通俗易懂的语言来解释的种种科学现象和理论的知识文字
在平平淡淡的日常中,大家都不可避免地要接触到论文吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。那么问题来了,到底应如何写一篇优秀的论文呢?下面是我
对宝宝来说,去学校接受教育仅仅是为未来事业打下基础,未来的自己能够获得一份不错的工作才是把自己所学到的知识用来回报社会的所在。下面我整理了家长育儿知识,供你参考