zhuliangli
数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-()=. 然后便要进行讨论: 当 d>0 时,>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥
追梦少年0215
数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
umaumauhauha
不等式理论简史及离散型Hilbert不等式[论文摘要]本文首先介绍了不等式理论发展的历史,然后引入了离散型Hilbert不等式,介绍了Hilbert不等式的一个初等证明,最后对Hilbert不等式的推广形式作了简要的总结。[关键词]不等式理论 Hilbert不等式初等证明 权函数[Abstract]In this passage,we introduce the history of inequality theory we introduce the Hilbert’s inequality with a primary the end,we make a summary of a series forms of Hilbert’s inequality.[Keywords]Theory of inequality Primary proof of Hilbert’s inequality Weight function 1 引 言 选题背景 众所周知,不等式理论在数学理论中占有重要地位,它渗透到数学的各个领域,因而有必要对不等式理论的发展历史有一个清晰的认识。Hilbert不等式提出以来,众多数学家给出了各种证明,本文介绍了一个初等证明。同时,总结了Hilbert不等式的各种推广形式。本文的主要内容本文的工作主要有三个方面:(1)、介绍不等式理论的发展历史(2)、介绍Hilbert不等式并给出了一个初等证明(3)、总结Hilbert的各种推广形式2 不等式理论简史和Hilbert不等式 不等式理论简史 数学不等式的研究首先从欧洲国家兴起, 东欧国家有一个较大的研究群体, 特别是原南斯拉夫国家。目前,对不等式理论感兴趣的数学工作者遍布世界各个国家。在数学不等式理论发展史上有两个具有分水岭意义的事件,分别是: Chebycheff 在 1882 年发表的论文和 1928 年Hardy任伦敦数学会主席届满时的演讲;Hardy,Littlewood和 Plya的著作 Inequalities的前言中对不等式的哲学 (philosophy) 给出了有见地的见解: 一般来讲初等的不等式应该有初等的证明, 证明应该是“内在的”,而且应该给出等号成立的证明。A. 认为, 人们应该尽量陈述和证明不能推广的不等式. Hardy认为, 基本的不等式是初等的.自从著名数学家 G. H. Hardy,J. E. Littlewood和G. Plya的著作 Inequalities由Cambridge University Press于1934年出版以来, 数学不等式理论及其应用的研究正式粉墨登场, 成为一门新兴的数学学科, 从此不等式不再是一些零星散乱的、孤立的公式综合, 它已发展成为一套系统的科学理论。20 世纪 70 年代以来 , 国际上每四年在德国召开一次一般不等式 ( General Inequalities) 国际学术会议 , 并出版专门的会议论文集。不等式理论也是 2000 年在意大利召开的第三届世界非线性分析学家大会 (“The ThirdWorld Congress of Nonlinear Analyst s” ( WCNA - 2000) )的主题之一。2000 年和 2001 年在韩国召开的第六届和第七届非线性泛函分析和应用国际会议 ( InternationalConference on Nonlinear Functional Analysis andApplications) 与 2000 年在我国大连理工大学召开的ISAAC都将数学不等式理论作为主要的议题安排在会议日程之中。2001 年的不等式国际会议 IN EQUAL IT IES于 2001 年 7 月 9 日至 14 日在罗马尼亚 University of t heWest 召开。历史上 , 华人数学家在不等式领域做出过重要贡献 ,包括华罗庚、樊畿、林东坡、徐利治、王忠烈、王兴华等老一代数学家。最近几年我国有许多数学工作者始终活跃在国际数学不等式理论及其应用的领域 , 他们在相关方面做出了独特的贡献 , 引起国内外同行的注意和重视。例如王挽澜教授、石焕南教授、杨必成教授、高明哲教授、张晗方教授、杨国胜教授等。20世纪80年代以来在中国大地上出现了持续高涨的不等式研究热潮。 20世纪80年代杨路等教授对几何不等式研究的一系列开创性工作,将我国几何不等式的研究推向高潮;在代数不等式方面,王挽澜教授对Fan ky不等式的深人研究达到国际领先水平。祁锋教授及其所领导的研究群体在平均不等式及其他不等式方面取得了大量而系统的前沿研究成果;对分析不等式,胡克教授于1981年发表在《中国科学》上的论文《一个不等式及其若干应用》[5],针对Holder不等式的缺陷提出一个全新的不等式,被美国数学评论称之为"一个杰出的非凡的新的不等式",现在称之为胡克(HK)不等式。胡克教授对这个不等式及其应用作了系统而深刻的研究。 目前我国关于数学不等式理论及其应用的研究也有较丰富的成果。例如匡继昌先生的专著《常用不等式》一书由于供不应求 , 在短短的几年内已经出版了第二版 ,重印过多次。对于数学专著来讲 , 这是少有的现象。第二本较有影响的专著是王松桂和贾忠贞合著的《矩阵论中不等式》。另外 , 国内还有一个不等式研究小组比较活跃 , 主办一个《不等式研究通讯》的内部交流刊物 , 数学家杨路先生任顾问。对Hilbert不等式,是由Hilbert 在他的积分方程的讲座中提出。 此后,许多著名数学家如Feier(1921),Framcis,Littlewood (1928),Hardy (1920),Hardy-Littlewood-Polya(1926),Mulhoand(1928,1931),Owen(1930),Polya和Szegb,Schur(1911),F. Wiener (1910)等都做出过贡献。为此,Hardy等在文献「1」中的第9x章中专门讨论Hilbert不等式及其类似情形和推广。 20世纪90年代以来,我国一大批学者如徐利治,杨必成教授等对Hilbert不等式及其类似情形和推广的研究取得了举世瞩目的成果。由于这些结果在理论和实际运用方面都有重要意义,引起一系列广泛研究,当中取得各式各样的进展,成果在众多报刊杂志上被发表。综上所述 , 数学不等式理论充满蓬勃生机、兴旺发达。 Hilbert不等式的初等证明 命题1 (Hilbert 不等式)如果 、 是平方可和实数列,则二重级数 是收敛的,且 (1)不等式严格成立,等式成立当且仅当 、 恒为零,(1)式中 是最优的。 命题一的证明须应用两个引理。 引理一 对每一个正数m,有 < 证明 设点(0,0),(0, ),( , )分别用C,Y, (n=0,1,2,•••)表示,S表示圆心在点C半径为 的从点 到Y 圆的面积, 是直线C 与过点 的竖线的交点(n=1,2,3,•••)。此外,设 表示扇形 C 的面积(如下 图1) 用 表示 的面积,于是,得到 =S= > = = • = > 因此, < .现在可以证明Hilbert不等式了。记 = 应用Schwarz不等式,得。以上应用了引理1,显然,最后不等式严格成立当且仅当序列 、 恒为零。往证 不能被比它小的常数代替。引理2 对每一个自然数m>1,有 > - 。证明 设 表示直线 和直线 (n=0,1,2,•••,m-1)的交点, 表示扇形 的面积(如下图2), 则显然有 = < = + = + = + 因此, > - 下证Hilbert不等式中的 是最优常数,考虑序列: = = ,当 时, = =0,当 > 时,这里k是自然数,则 + + (由引理2) -( )因此 - 因此, 是Hilbert不等式中的最优常数。至此完成了Hilbert不等式的初等证明。 Hilbert不等式的推广 Hilbert提出不等式 (1) (2)后,Hardy把这些结果扩展,他得出了如下不等式 (3) (4)在这里, , 0, + =1,且p q>1。不等式(3)(4)被成为Hardy-Hilbert重级数不等式,且等号成立当且仅当 、 恒为零。多年以来,很多数学家对Hilbert不等式进行了研究,得到了一系列的成果。下面简单回顾一下这些研究的历程。先介绍在Hilbert最原始的不等式基础上取得的成果,然后再展示在Hardy-Hilbert不等式上的一系列成就。1990年, et al仔细分析Hardy最初的方法技术,引入一个权函数w(n)= ,得到了改进后的不等式: (5)不久,Hsu和王把权函数精简为 ,寻找能使式(5)成立θ的最大可能值的问题被提及。稍后, Hsu和高明哲使用不同方法得出θ的下确界,θ=接着得到了θ的上确界λ(λ=),从而使问题得到解开。至于不等式(2),高明哲作了改进, w(n)= (n)>0(n=1,2,…)。然后高应用了Euler公式对权函数w作出估计:w(n)≤ ,θ=17/20类似地,在Hardy-Hilbert不等式上得到一些新结果。在研究Hardy-Hilbert不等式(3)的过程中,含参数n的求和式的值被估算,如 同是1990年,Hsu和Guo率先引入权函数: 不等式(3)拓展为 然后,权函数被Hsu和高明哲改进为 ,两年以后,高再给出权函数的精确形式: 再不久,杨和高得到 的一个下界,也就意味着,在权函数方面取得一个更好的结果: c是Euler常数,而(1-c)被证明为使不等式成立的最佳常数,高明哲证明了 的一个上界是: ρ(t)=t-[t]-1/2而 被估计为 若 > ,不等式不再成立,问题得到完全解开。有关不等式(4),杨必成得到如下较好的结果: ,r=p,q,c是常数。1998年,杨必成和Debnath给出了另一形式的带权函数的Hardy-Hilbert不等式: 除了上面所述以外,杨还有以下结果: 若把s(n,r)在上述表达式变为 ,会得到另一些结果.21世纪初,谭立通过引入一个形如 的权系数改进了不等式(3),若, 那么, 当中=ln2-13/48+/1920(0<<1),它是与r无关的最佳常数。并得到下面推论:设 ,当q充分大时,有 当中 引进适当的参数会使学习和研究对象更具概括性,也是常用的一种方法。在此部分,总结一下具广义性的含参数形式的Hilbert不等式.最近,就关于离散形式的Hilbert不等式,杨必成先引入参数A,B及λ从而不等式(1)得以拓展,他建立了如下新的不等式: < A,B>0,0<λ≤2,B(p,q)是beta函数而常数 是最佳,杨更得到如下结果: < A,B,C>0, ,0<λ≤2, 也被证明为最佳。对不等式(4),杨和Debnath给出一个推广: < ,常数 = 为最佳,其中,2-min(p,q)< 2,B(m,n)是beta函数。最近,匡继昌和Debnath给出一般形式的Hardy-Hilbert不等式: , p>1,1/p+1/q=1,1/2<min(p,q),K(x,y)是非负次数为-t(t>0)的齐次函数。若在(0,+∞)上有四阶连续微商,当n=1,2,3,4, ,当m=0,1,y+ <+ =p,q那么 < ,其中 = >0,r=p,q。更新的是,考虑不等式(3)和(4),杨和Debnath建立了含参数A,B,λ的新不等式: 常数因子3 为最佳。特别的,(1) λ=1,A,B>0 (2) λ=2,A,B>0 (3) 2-min{p,q}<λ≤2,A=B=1, 以上的常数因子都是最佳。以另外方式引入参数λ,杨得出以下结果: 常数因子π/(λsinπ/p)为最佳。特别地,(1) λ=1, (2) p=q=λ=2, 以上不等式的常数因子都是最佳。再新,匡继昌建立一个新的Hilbert不等式的一般形式 1/p+1/q=1,对每个正整数N<+∞,N=+∞,定义: 若1
人民法院司法警察暂行条例》第二条、第三条明确规定:人民法院司法警察是中华人民共和国人民警察的警种之一。人民法院司法警察的任务是通过行使职权,预防、制止和惩治妨碍
你看下这个吧,虽然不是范文,应该对你写作有点帮助。文章来源:期刊云-论文格式。文献综述的写作及注意事项(供毕业设计参考)1. 基本概念文献综述是反映当前某一领域
建议你网上查找一份GB7714国家统一标准的行文格式最新版,那样最标准,也可以参看一下CKNKI上的论文标注作为模板
低碳环保的城市其实就是一种比较复杂的低碳经济的发展方式,这是我为大家整理的低碳生活的科技论文,仅供参考!低碳生活的科技论文篇一 探讨低碳环保城市规划
牛奶中钙含量的参考文献通过网站查询。利用网络资源(中国知网等)进行查询。网站在查找所需文献的同时,还提供了论文引文关联检索和指标统计。可从这些文献中,获取相关的