七月的蟹
地下水资源管理的线性规划问题,通常可分为两大类:一类是从社会效益或环境效益出发,即在一定水文地质条件下,寻找供水或排水工程的最佳方案;另一类是从经济效益出发,在满足供、排水工程规划的情况下,寻求完成此工程经济效益最高或成本最低的方案。
线性规划问题包括三个要素:
(1)决策变量。根据已知条件及所要求的问题,用一组变量x1,x2,…,xn来表示,这些变量称为决策变量,取值要求为非负。
(2)目标函数。一个问题都有一个明确的目标,以决策变量的线性函数表示,称为目标函数,它是衡量决策方案优劣的准则。这种准则可用物理量(如水位,水量、水温、水质等)或经济指标(如利润、成本等)来衡量。
(3)约束条件。每一个问题都有一定的限制条件,这些条件称为约束条件。它是用一组线性等式或不等式来表示的,其变量与目标函数变量必须是有机联系或者一致的。
因为目标函数和约束方程都是决策变量的线性表达式,所以这类模型称为线性规划模型。线性规划的数学模型可表示为:
目标函数
华北煤田排水供水环保结合优化管理
约束条件
华北煤田排水供水环保结合优化管理
式中:Z为目标函数值;n为决策变量数;m为约束方程数;ai,j为结构系数;cj为价值系数;bi为常数项。
售书问题优化模型摘要优化问题是工程技术、经济管理和科学研究等领域重做常见的一类问题,在解决极值问题中起着重要作用。零一规划也是常用的数学工具,能够有效的表示事物
线性规划问题在经济生活中的应用详见线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法_在经济管理、
对于写论文是很头疼的事,真的就像无头苍蝇一样,当时找的诚梦计算机毕业设计帮忙搞定的,自己轻松好多。
……终于找到组织了,同上,跪求……
简单说一下时代背景,如规划模型在经济学精确化条件下越来越重要,作为运筹学的重要分支,应用……再解释一下数学规划的定义,稍加阐释,百度上有,不过太简单,然后说一下