• 回答数

    3

  • 浏览数

    108

大桥鸭子
首页 > 学术论文 > 关于小麦的遗传学研究论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

nanami小明

已采纳

植物着丝粒是基因组中进化最剧烈、结构最复杂的区域,在物种形成和分化过程中发挥重要作用。 大多数植物着丝粒结构复杂,主要是由高度重复的卫星DNA (satellite)以及中间穿插的反转座子序列 (CR) 组成,其中着丝粒satellite序列单元长度主要集中在150 – 180 bp之间,例如水稻CentO和玉米CentC序列,多年前已经发现并用于着丝粒结构与功能研究(Comai et al., 2017)。 普通小麦是重要的粮食作物,经过两次远缘杂交和多倍化过程,是染色体组进化及多倍体二倍化研究的模式材料。 然而普通小麦基因组巨大,90%以上的序列均是高度的重复序列,给小麦研究带来巨大的挑战(Marcussen et al., 2014)。 前期对小麦着丝粒的研究基本局限于通过筛选着丝粒BAC等手段,获得某些着丝粒序列(Liu et al., 2008; Li et al., 2013)。 对小麦着丝粒全面解析,包括小麦着丝粒DNA序列组成(尤其是功能性satellite序列)、结构以及其在基因组形成和进化过程中的动态变化及对多倍化适应的分子机制目前基本不清楚。

韩方普研究组长期从事植物着丝粒的遗传和表观遗传学研究。 前期在小麦非整倍体及其野生近缘种杂交后代观察到丰富的着丝粒变异现象,染色体重排诱导着丝粒序列减少、丢失、扩增、新着丝粒以及多着丝粒形成,不稳定的着丝粒可能造成染色体频繁的断裂和接合,暗示着丝粒在异源多倍体小麦物种形成过程潜在的功能 (Guo et al., 2016)。近年来随着小麦参考基因组的逐渐公布,对小麦着丝粒进行全面的解析成为可能(Avni et al., 2017; Luo et al., 2017; (IWGSC), 2018; Ling et al., 2018),)。

1. 我们利用之前发表的中国春小麦着丝粒表观标记CENH3抗体的ChIP数据,重新比对到最新的中国春参考基因组上,确定了小麦着丝粒大小及位置(图1A)。 在小麦中发现两类着丝粒特异的串联重复序列,和CENH3核小体结合,分别在其二倍体供体B和D亚基因组着丝粒富集分布(图1B)。与二倍体供体着丝粒特异satellite序列的信号强度相比,在普通小麦中这些序列的拷贝数明显减少,FISH信号明显减弱,甚至在某些着丝粒上已经完全丢失satellite序列(图1B)。与传统着丝粒的串联重复序列单元大小150-180 bp不同,小麦着丝粒satellite序列单元大小超过500-bp,序列上包含多个特定的CENH3结合位点,表现出周期性CENH3结合特点(图1C)。

图1 小麦着丝粒串联重复序列在不同亚基因组之间的分布

2. 随后系统进化树分析表明小麦着丝粒串联重复序列在不同亚基因组间发生分化(图2A),更同质的串联重复序列保持和CENH3核小体的结合(图2B),在小麦多倍化过程中,从二倍体到四倍体再到六倍体,着丝粒特异satellite序列在每个亚基因组上其遗传多样性明显增加(图2C) 。最后比较不同倍性小麦着丝粒位置、基因共线性以及表达等情况发现,多倍化过程中小麦着丝粒结构发生重排,基因位置和表达水平发生变化,着丝粒串联重复序列发生局部扩增(图1B)。异源六倍体小麦着丝粒在不同亚基因组之间的不对称性可能参与小麦减数分裂过程同源染色体的配对,促使多倍体小麦的稳定传递。

图2 小麦着丝粒特异satellite序列亚基因组不同区域序列相似度

该论文于2019年7月16日在线发表于 《The Plant Cell》 上,题为“Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes” (),韩方普研究组已毕业博士研究生苏汉东和刘亚林为该文章的共同第一作者,韩方普研究员为通讯作者。该研究得到国家自然科学基金、国家重点研发计划等项目的资助。

参考文献

Avni, R., Nave, M., et al., (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93-97.

Comai, L., Maheshwari, S., and Marimuthu, . (2017). Plant centromeres. Curr. Opin. Plant Biol. 36, 158-167.

(IWGSC), . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403).

Li, B., Choulet, F., Heng, Y., Hao, W., Paux, E., Liu, Z., Yue, W., Jin, W., Feuillet, C., and Zhang, X. (2013). Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J. 73, 952-965.

Ling, ., Ma, B., et al., (2018). Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557, 424-428.

Marcussen, T., Sandve, ., Heier, L., Spannagl, M., Pfeifer, M., International Wheat Genome Sequencing, C., Jakobsen, ., Wulff, ., Steuernagel, B., Mayer, ., and Olsen, . (2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092.

Liu, Z., Yue, W., Li, D., Wang, ., Kong, X., Lu, K., Wang, G., Dong, Y., Jin, W., and Zhang, X. (2008). Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres.

Chromosoma 117, 445-456.

Luo, ., Gu, ., et al., (2017). Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681):498-502.

298 评论

blue-taste

利用生物技术向小麦导入冰草优异基因的研究 摘 要 小麦是世界上种植面积最大和最重要的粮食作物。利用生物技术向栽培作物转移向外源优异基因来拓宽小麦育种的遗传基础,是现代作物遗传育种学科中的一个非常重要的研究领域。 栽培小麦(Triticum aestivum L., 2n=4x-42, AABBDD)与冰草属(Agropyron Gaertn., P genome )(这儿所说的冰草属是现代小麦族植物分类学上的概念,而非传统的广义冰草属概念,即与一些小麦遗传育种学家将长穗偃麦草(Elytrigia elongata)和中间偃麦草(Elytrigia intermedia)等偃麦草属种也称为冰草的传统概念截然不同)植物间的杂交,可追溯到本世纪30年代(White, 1940; Smith, 1942; Dewey , 1984), 但直到90年代一些学者才先后报道了小麦与冰草属植物间的成功杂交(李立会等, 1990, 1995;Li & Dong, 1991; Chen et al., 1990; Limin & Fowler, 1990; Ahmad & Comeau , 1992; Jauhar, 1992)。 尽管这儿所列出的国外一些科学家也曾获得了小麦与冰草属植物间的杂种,但由于外源种选择的盲然性,即对要从冰草属植物向小麦转移哪些基因不明确(Chen et al., 1990; Jauhar, 1992), 或杂种F1的高度不育性(Ahmad & Comear, 1992), 或要转移的目标基因难以在小麦背景下表达(Limin & Fowler, 1990 )等原因,未见进一步的报道,而是基本上放弃了该领域的研究工作(私人通信,1997)。 在本项研究工作中,我们以普通小麦品种Fukuho (春性,具3对可杂交性基因,农艺性状良好,原产于日本)为母本,以分别采自新疆和内蒙古的3份冰草(Agropyron cristatum Gaertn., 2n=4x=28, PPPP)为父本进行杂交,并对杂种后代进行了研究。主要结果包括: 1、科学选择远缘杂交亲本,为杂交和外源优异基因转移的成功奠定了坚实的基础。在选择外源供体种的过程中,本项研究首先由中国农业科学院作物品种资源研究所和植物保护研究所、澳大利亚Division of Plant Industry, CSIRO, 加拿大Cytogenetics Section, Ottawa Research Station, Agriculture Canada 等单位对上千份小麦野生近缘植物的农艺性状、抗逆性和抗病性进行了联合鉴定,然后根据综合鉴定结果才精选出本项研究所利用的3份冰草-最佳外源供体种。因为这3份冰草不仅具有其它外源种难以比拟的众多优异基因(性状),包括小麦超高产育种所需的合理株型结构(株高小于60cm且穗下茎长度约占株高的2/3、有效分蘖>50、叶片窄短上挺)、大穗多粒(每穗结实在150粒以上)、黑粒且蛋白质含量极高、极强的抗旱和抗寒性、适度的耐盐性、对三种锈病、白粉病和黄矮病免疫、高抗赤霉病等,而且更为重要的是上述优异基因都是当前小麦育种迫切需要的。 2、利用现代远缘杂交方法和幼胚拯救技术,在国际上首次获得了具部分自交可育性的普通小麦与冰草间的杂种,并发现以不同来源的冰草为父本,不仅杂交结实率不同,而且杂种F1的表现型亦不同。这一结果,一方面突破了前人(Dewey, 1984)所认为的“冰草属P染色体组在小麦族中具有独立的遗传地位,与小麦之间不可能杂交”的论断;另一方面杂种F1具部分自交可育性,为实现外源基因的成功转移 奠定了坚实的物质基础。 3、以杂种F1幼穗为外植体,通过诱导愈伤组织产生体细胞无性系变异,首次发现杂种F1在无染色体数量变异情况下,其自交可育性或从无到有(0Õ ),或显著提高(10倍)。这一发现之所以重要,是因为它向人们展示了通过这一技术有可能在杂种F1就实现外源基因转移的美好前景。 4、通过精细分析,首次阐明了一些遗传学机理:一是杂种F1自交可育性是由于2条P染色体含有控制减数分裂过程中染色体分离的基因,从而能够形成有功能的近等2n或未减数配子;二是另外1条P染色体上具有抑制小麦Ph基因的遗传因子,能够诱发冰草P染色体组和小麦A、B、D染色体组间的染色体相互配对;三是证实了通过染色体间的自发易位可实现小麦-冰草间的基因交流。这些发现,一方面彻底突破了国际权威所认为的“小麦-冰草间不可能进行基因交流”的论断,另一方面为更加有目的、更加高效率地转移冰草优异基因提供了重要的理论指导。 5、利用回交、选择和形态学、细胞学、等位酶以及基因组原位杂交检测等综合技术,首次育成了11个遗传稳定的小麦-冰草异源二体附加系,并提出了有效产生异源二体附加系(列)的可行做法。异源二体附加系的产生,是研究每条P染色体上的基因在小麦背景下的遗传效应及其有效利用的重要工具。 6、首次创造了一批携带冰草优异基因、遗传稳定(2n=42, 21II ,异源易位系或代换系)且能为育种和生产利用的新种质。其普遍的特点是:有效分蘖多(15~82穗/株);株高70~95cm且穗下茎约占株高的1/2;旗叶上挺;大穗(55~112粒/穗);籽粒外观白色或黑色、蛋白质含量高(); 千粒重>38g; 综合抗病性(白粉病、条锈病、黄矮病和赤霉病)、抗寒性和抗旱性良好,特别是一些新种质具超高产潜力(理论产量高于600 kg/亩)。目前,这批新种质已为我国小麦主产区的9省15家育种单位利用,其中在陕西、山西有5个新种质正参加产量比较试验。 7、对获得的遗传稳定(2n=42, 21II ,异源易位系)的黑色籽粒和对白粉病免疫新种质中的黑色籽粒基因和抗白粉病基因(均来自冰草)进行了初步遗传分析,证明二者皆为显性单基因遗传。关键词:普通小麦(Triticum aestivum, L., 2n=6x=42, AABBDD); 冰草(Agropyron cristatum Gaertn., 2n=4x=28, PPPP);属间杂种;自交可育性;异源二体附加系;遗传分析;新种质Introduction of Desirable Genes from Agropyron cristatum (L.) Gaertn. to Triticum aestivum L. Using BiotechnologyDoctoral student : Li-Hui LiSupervisor: Professor Yu-Shen Dong (Institute of Crop Germplasm Resources, Chinese Academy of Agriculture Sciences, Beijing, 100081)AbstractAs in most other crops, the genetic variation of cultivated wheat has been greatly eroded under modern agricultural systems. Genetic erosion not only limits the further improvement of yield and quality but also makes wheat increasingly vulnerable to biological and environmental stresses. A large amount of genetic variation exists in the wild relatives of cultivated wheat. The introduction of genetic variation from alien species has been a valuable method for increasing the amount of genetic diversity available to wheat this experiment, intergeneric hybrids of Triticum aestivum cv Fukuho (2n=6x=42, AABBDD) with three accessions of tetraploid A. cristatum (2n=4x=28, PPPP) were synthesized through immature embryo rescued in artificial medium. These hybrids can be used to: (1) transfer the desirable traits from A. cristatum into common wheat; (2) identify the effects of the P genome on self-fertility in intergeneric hybrids; and (3) produce disomic addition lines of wheat-A. cristatum. Through study of the intergeneric hybrids and their derivatives, the following results were obtained:1. A. cristatum may be one of the best potential alien donors in the Triticeae for wheat improvement. Agropyron Gaertn. is a small genus of no more than ten species, which constitute what is known as the “crested wheatgrass complex” with the P genome, in accordance with the terminology of many modern botanists. A. cristatum (L.) Gaertn. is the type species of this genus. All species of the genus are very valuable; they are cultivated as predominantly pasture-fodder plants, distinguished by their high level of drought and cold tolerance; some species have be successfully used for fixing drifting sands. In addition, A. cristatum has also been found to possess the other desirable traits that are potentially valuable for wheat improvement through evaluation of all Triticeae collections from the northern part of China; these include shorter stem (usually less than 60 cm), more tillers and florets, immunity to wheat diseases such as rusts, powdery mildew, and barley yellow dwarf virus (BYDV) as well as resistance to wheat scab. 2. In the three hybridization combinations, seed set () and plant development were different. Each one plant obtained from Fukuho with A. cristatum accession No. Z540 and Z602 respective developed poorly. The former died before heading. Although the later produced two spikes, neither selfed nor backcross seed was obtained from these two spikes. The two plants obtained from the Fukuho×A. cristatum Z559 showed vigorous tillering. This result indicated that the three accessions of A. cristatum used in this experiment are different in crossability with the Fukuho. The root-tips of all hybrid seedlings were observed, and revealed that somatic chromosome number of each was 2n=35 as . A self-fertile intergeneric hybrids between Triticum aestivum cv Fukuho (2n=6x=42, AABBDD) and tetraploid A. cristatum (2n=4x=28, PPPP) were obtained for the first contrast with the reports that either no BC1 derivatives from wheat-Agropyron hybrids was obtained or BC1 derivatives obtained were very difficult, in the Fukuho×A. cristatum Z559 hybrids, however, they not only had a high seed set () of backcrossing with common wheat, but also were partially self-fertile. The mean configurations at meiotic metaphase I of the hybrids were I + rod Ⅱ + ring Ⅱ + Ⅲ + Ⅳ. Some of bivalents per cell were clearly heteromorphic on the basis of various chromosome size, indicating that these bivalents were heterogenetic pairing. At anaphase I, chromosome separation was mainly the most (16~30 chromosomes) of 35 chromosomes to assemble at one pole, resulting in that the bigger daughter cells receiving most of 35 chromosomes might develop the functional . In order to induce somaclonal variation, the immature inflorescences of the hybrids between Triticum aestivum cv Fukuho and A. cristatum Z559 were cultured. Although the regenerants did not exhibit variation in chromosome number, they did show a higher degree of meiotic instability than the initial hybrids. Especially, the selfed seed set could be increased greatly in the regenerated plants, being from to . As a result, a total of 61 selfed seeds were obtained. Obtaining of so more selfed seeds from the Fukuho×A. cristatum Z559 is rare in the intergeneric hybrids involving wheat, and makes a substantial foundation for transferring the desirable genes from A. cristatum into common wheat. 5. Using methods such as morphology, cytology, isozymes and genomic in situ hybridization, the selfed and backcross derivatives were analysed. The results showed that all plants with the alien characters carried the genetic materials of the P genome. Meanwhile, a total of 11 disomic alien addtion lines were obtained. 6. After all cytological data obtained from this experiment were summed up and analysed, some conclusions could be obtained. They were: (1) the A. cristatum Z559 used in this experiment carried a genetic system suppressing Ph activity, and this genetic system might be mainly involved one of the P genome; (2) the P genome contained genes controlling chromosomes segregation at meiotic anaphase, and the genes might be mainly involved two of the P chromosomes; and (3) the spontaneous wheat-A. cristatum translocations can occur in the selfed and backcross . In this experiment, the other very important result is that some new germplasm with the desirable alien genes were obtained. They showed more effective tillerings (15-82 spikes per plant), plant height ranged from 70 to 95 cm, 55-112 grains per spike, a higher content of protein (), resistance to wheat diseases such as powdery mildew, stripe rust, BYDV and wheat scab, and tolerance to drought and cold. So far, all new germplasm obtained from this experiment have been utilized by the 15 institutions for wheat breeding in . The new germplasm with black-grain in color and immunity to powdery mildew were analyzed. Genetic analysis revealed that these two characters were from A. cristatum Z559 and were controlled by a dominant gene respectively. Key Words: Triticum aestivum L., Agropyron cristatum, Intergeneric hybrids, Self-fertility, Alien addition and translocation lines, Genetic analysis.

271 评论

小小爱人小姐

来自知网作者唐海峰摘要HTS-1是一种新型的小麦雄蕊同源转化为雌蕊突变体,与普通小麦不同的是它的雄蕊部分或者全部同源转化为雌蕊,甚至我们可以在HTS-1中发现没有雄蕊但出现6个雌蕊或者6个雌蕊化结构的小花。因此HTS-1在研究小麦育种和花发育中具有很重要的...更多关键词小麦;基因分型测序(GBS);雄蕊同源转化为雌蕊突变体;Win基因收藏全部来源 求助全文知网相似文献 参考文献利用小麦高密度遗传图谱定位雄蕊同源转化为雌蕊基因hts《西昌学院学报(自然科学版)》 - 2022 - 被引量: 0利用基因芯片技术进行小麦遗传图谱构建、重要性状QTL发掘及近等基因系创制莫洪君 - 《西昌学院学报(自然科学版)》 - 2014 - 被引量: 2利用基因芯片技术进行小麦遗传图谱构建、重要性状QTL发掘及近等基因系创制莫洪君 - 四川农业大学 - 0 - 被引量: 0小麦硒含量控制基因的QTL定位及遗传分析裴英 - 《四川农业大学》 - 2016 - 被引量: 0应用快速切片法观察芍药不同花型品种花芽分化进程张建军,赵芮,朱炜,... - 中国观赏园艺学术研讨会 - 2018 - 被引量: 0栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位于春淼张勇王好让杨兴勇董全中薛红张... - 作物学报 - 2022 - 被引量: 0鱼类遗传连锁图谱构建及QTL定位的研究进展陈军平胡玉洁王磊田雪李学军 - 水产科学 - 2020 - 被引量: 0利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析陈建省,田纪春,陈广凤,... - 《中国农业科学》 - 2014 - 被引量: 61一个新的水稻叶片和雌蕊发育异常突变体的遗传分析及其基因的分子标记定位罗琼,王文明,肖晗,... - 《科学通报》 - 2001 - 被引量: 84基于SLAF-seq的小麦高密度遗传图谱的构建及品质性状的QTL定位李俏,潘志芬,高媛,... - 全国小麦基因组学及分子育种大会 - 0 - 被引量: 0基于SSR分子标记的福建百香果品种鉴定及指纹图谱构建魏秀清,李亮,熊亚庆,... - 福建农业学报 - 2022 - 被引量: 0小麦眼斑病抗性基因Pch1和供体的遗传图谱及Pch1转移片段的遗传多样性魏乐 - 中国科学院研究生院 中国科学院大学 - 2010 - 被引量: 0两份水稻花器官突变体的形态学观察、性状的遗传分析及相关基因的分子标记定位张绪梅 - 2003 - 被引量: 15割手密高密度遗传图谱的构建及黑穗病QTL定位杨翠凤 - 《广西大学》 - 2015 - 被引量: 1小麦高密度遗传图谱的构建及分蘖成穗的QTL定位胡洋山 - 四川农业大学 - 0 - 被引量: 0基于QTL作图与NGS-based BSA解析月季重瓣性状的形成机制姜珊 - 四川农业大学 - 0 - 被引量: 0万寿菊雄性不育性状的遗传分析及其育种应用何燕红 - 四川农业大学 - 2010 - 被引量: 3桃遗传连锁图谱的构建及雌蕊败育性状的定位乔飞 - 《西北农林科技大学》 - 2003 - 被引量: 8芦笋雌雄花发育转录组分析及性别决定相关miRNA靶基因的鉴定秦力 - 《西北农林科技大学》 - 2016 - 被引量: 4扁豆分子遗传图谱构建、主要农艺性状QTL定位及花序发育的生理学研究袁娟 - 2009 - 被引量: 7木绣球与荚蒾杂交的生殖生物学研究程甜甜 - 山东农业大学 - 2014 - 被引量: 1天山樱桃种质资源遗传多样性研究李春侨 - 新疆农业大学 - 0 - 被引量: 0利用EST-SSR分子标记构建小麦遗传图谱代畅 - 西华师范大学 - 0 - 被引量: 0基于两个RIL群体的小麦产量相关性状的QTL定位吕栋云 - 西北农林科技大学 - 0 - 被引量: 0利用基因芯片技术进行小麦遗传图谱构建及株型相关性状的QTL定位连俊方 - 《西北农林科技大学》 - 2016 - 被引量: 2陆地棉×毛棉种间高密度遗传图谱的构建Khan,Muhammad Kas... - 《中国农业科学院》 - 2013 - 被引量: 1西瓜高密度遗传图谱构建及三个果实性状相关候选基因的精细定位李兵兵 - 中国农业科学院 - 0 - 被引量: 0小麦抗条锈新基因YrTp1和YrTp2的发现和分子标记定位殷学贵 - 2005 - 被引量: 10鸭茅分子遗传连锁图谱构建及开花基因定位谢文刚 - 2013 - 被引量: 5

346 评论

相关问答

  • 小麦遗传物种论文参考文献

    首页智能降重人工降重论文查重登录注册首页 > 正文水稻雄蕊雌蕊突变体的遗传分析一、水稻雄蕊雌蕊化突变体的遗传分析(论文文献综述)王昌健[1](2020)在《水稻

    心菲殿下 3人参与回答 2023-12-06
  • 关于遗传的论文模板生物

    遗传学的论文一篇,给点素材你怎么理解,分析探讨具体谈清晰的

    冰枫星雨 5人参与回答 2023-12-11
  • 动物遗传学研究论文

    发表论文160多篇,其中在20种国际性学术期刊发表SCI论文57篇;以通讯作者在17种国际性学术期刊发表SCI论文46篇,其中在本学科领域国际学术期刊排名前15

    大熊二的小熊大 2人参与回答 2023-12-06
  • 关于传热学的研究论文

    1、 传热学发展史传热学作为学科形成于19世纪。在热对流方面,英国科学家牛顿于1701年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过

    tastebytaste 3人参与回答 2023-12-09
  • 生物遗传学小论文

    1、通过遗传学研究人类起源2、在遗传学的指导下通过生物工程开发转基因作物3、基因治疗

    雪蓝的枫叶 3人参与回答 2023-12-08