松子红枣茶
人脸识别的实现方法如下:
(1)参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸。
(2)人脸规则法:由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸。
(3)样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器。
(4)肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
(5)特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。
肥肥来了啊
主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。1. 基于几何特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。可变形模板法可以视为几何特征方法的一种改进,其基本思想是 :设计一个参数可调的器官模型 (即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。 基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。2. 局部特征分析方法(Local Face Analysis)主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。3. 特征脸方法(Eigenface或PCA)特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中生成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。现在Eigenface(PCA)算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。其技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。Turk和Pentland提出特征脸的方法,它根据一组人脸训练图像构造主元子空间,由于主元具有脸的形状,也称为特征脸 ,识别时将测试 图像投影到主元子空间上,得到一组投影系数,和各个已知人的人脸图像比较进行识别。Pentland等报告了相当好的结果,在 200个人的 3000幅图像中得到 95%的正确识别率,在FERET数据库上对 150幅正面人脸象只有一个误识别。但系统在进行特征脸方法之前需要作大量预处理工作如归一化等。在传统特征脸的基础上,研究者注意到特征值大的特征向量 (即特征脸 )并不一定是分类性能好的方向,据此发展了多种特征 (子空间 )选择方法,如Peng的双子空间方法、Weng的线性歧义分析方法、Belhumeur的FisherFace方法等。事实上,特征脸方法是一种显式主元分析人脸建模,一些线性自联想、线性压缩型BP网则为隐式的主元分析方法,它们都是把人脸表示为一些向量的加权和,这些向量是训练集叉积阵的主特征向量,Valentin对此作了详细讨论。总之,特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性。基于KL 变换的特征人脸识别方法基本原理:KL变换是图象压缩中的一种最优正交变换,人们将它用于统计特征提取,从而形成了子空间法模式识别的基础,若将KL变换用于人脸识别,则需假设人脸处于低维线性空间,且不同人脸具有可分性,由于高维图象空间KL变换后可得到一组新的正交基,因此可通过保留部分正交基,以生成低维人脸空间,而低维空间的基则是通过分析人脸训练样本集的统计特性来获得,KL变换的生成矩阵可以是训练样本集的总体散布矩阵,也可以是训练样本集的类间散布矩阵,即可采用同一人的数张图象的平均来进行训练,这样可在一定程度上消除光线等的干扰,且计算量也得到减少,而识别率不会下降。4. 基于弹性模型的方法Lades等人针对畸变不变性的物体识别提出了动态链接模型 (DLA),将物体用稀疏图形来描述 (见下图),其顶点用局部能量谱的多尺度描述来标记,边则表示拓扑连接关系并用几何距离来标记,然后应用塑性图形匹配技术来寻找最近的已知图形。Wiscott等人在此基础上作了改进,用FERET图像库做实验,用 300幅人脸图像和另外 300幅图像作比较,准确率达到 。此方法的缺点是计算量非常巨大 。Nastar将人脸图像 (Ⅰ ) (x,y)建模为可变形的 3D网格表面 (x,y,I(x,y) ) (如下图所示 ),从而将人脸匹配问题转化为可变形曲面的弹性匹配问题。利用有限元分析的方法进行曲面变形,并根据变形的情况判断两张图片是否为同一个人。这种方法的特点在于将空间 (x,y)和灰度I(x,y)放在了一个 3D空间中同时考虑,实验表明识别结果明显优于特征脸方法。Lanitis等提出灵活表现模型方法,通过自动定位人脸的显著特征点将人脸编码为 83个模型参数,并利用辨别分析的方法进行基于形状信息的人脸识别。弹性图匹配技术是一种基于几何特征和对灰度分布信息进行小波纹理分析相结合的识别算法,由于该算法较好的利用了人脸的结构和灰度分布信息,而且还具有自动精确定位面部特征点的功能,因而具有良好的识别效果,适应性强识别率较高,该技术在FERET测试中若干指标名列前茅,其缺点是时间复杂度高,速度较慢,实现复杂。5. 神经网络方法(Neural Networks)人工神经网络是一种非线性动力学系统,具有良好的自组织、自适应能力。目前神经网络方法在人脸识别中的研究方兴未艾。Valentin提出一种方法,首先提取人脸的 50个主元,然后用自相关神经网络将它映射到 5维空间中,再用一个普通的多层感知器进行判别,对一些简单的测试图像效果较好;Intrator等提出了一种混合型神经网络来进行人脸识别,其中非监督神经网络用于特征提取,而监督神经网络用于分类。Lee等将人脸的特点用六条规则描述,然后根据这六条规则进行五官的定位,将五官之间的几何距离输入模糊神经网络进行识别,效果较一般的基于欧氏距离的方法有较大改善,Laurence等采用卷积神经网络方法进行人脸识别,由于卷积神经网络中集成了相邻像素之间的相关性知识,从而在一定程度上获得了对图像平移、旋转和局部变形的不变性,因此得到非常理想的识别结果,Lin等提出了基于概率决策的神经网络方法 (PDBNN),其主要思想是采用虚拟 (正反例 )样本进行强化和反强化学习,从而得到较为理想的概率估计结果,并采用模块化的网络结构 (OCON)加快网络的学习。这种方法在人脸检测、人脸定位和人脸识别的各个步骤上都得到了较好的应用,其它研究还有 :Dai等提出用Hopfield网络进行低分辨率人脸联想与识别,Gutta等提出将RBF与树型分类器结合起来进行人脸识别的混合分类器模型,Phillips等人将MatchingPursuit滤波器用于人脸识别,国内则采用统计学习理论中的支撑向量机进行人脸分类。神经网络方法在人脸识别上的应用比起前述几类方法来有一定的优势,因为对人脸识别的许多规律或规则进行显性的描述是相当困难的,而神经网络方法则可以通过学习的过程获得对这些规律和规则的隐性表达,它的适应性更强,一般也比较容易实现。因此人工神经网络识别速度快,但识别率低 。而神经网络方法通常需要将人脸作为一个一维向量输入,因此输入节点庞大,其识别重要的一个目标就是降维处理。PCA的算法描述:利用主元分析法 (即 Principle Component Analysis,简称 PCA)进行识别是由 Anderson和 Kohonen提出的。由于 PCA在将高维向量向低维向量转化时,使低维向量各分量的方差最大,且各分量互不相关,因此可以达到最优的特征抽取。
胖墩er猫
毕业论文格式完整模板
艰辛而又充满意义的大学生活即将结束,毕业前要通过最后的毕业论文,毕业论文是一种有准备、有计划、比较正规的、比较重要的检验学生学习成果的形式,怎样写毕业论文才更能吸引眼球呢?下面是我为大家收集的毕业论文格式完整模板,希望能够帮助到大家。
专业论文论文题名:(二号,黑体,加粗,居中)
副标题(三号,黑体,加粗,居右)
张三 030333221 xx011班
(与标题按五号字大小空一行,小四号,黑体,居中,只学号加粗,每项中间空两个字符,不出现姓名、学号等字。)
指导老师:李四
(与姓名间不空行,小四号,黑体,居中,含指导老师四字。)
【摘要】: 对论文内容不加注释和评论的简短陈述,以第三人称陈述。一般应说明实践目的、实践方法、结果和最终结论等,一般不超过为300字。(与指导老师按五号字大小空一行,摘要两字为黑体,小四号,居左,加中括号,中括号采用中文形式;摘要部分的文字为宋体,五号,不另起一行,无需段落缩进。)
【关键词】: 为了文献标引工作从论文中选取出来用以表示全文主题内容信息款目的单词或术语。一般应选取3~5个词作为关键词。(与摘要间不空行,关键词三字为黑体,小四号,居左,加中括号,中括号采用中文形式;关键词为宋体,五号,词间用逗号分隔,最后一个词后不加标点符号,不另起一行,无需段落缩进。)
【正文】: 与关键词间不空行,正文两字为黑体,小四号,居左,加中括号,中括号采用中文形式
正文另起一行开始,正文部分文字为宋体,五号,每段首行两字符缩进,段落间不空行
A 正文层次:各部分层次不出现一xxxx等标题,统一层次格式为:
1(四号,宋体,居左,加粗,标题与上文按五号字大小空一行,与下文不空行)
(小四号,宋体,居左,加粗,小标题间不空行)
(五号,宋体,居左,加粗,小标题间不空行)
⑴(宋体,五号,居左,序号采用特殊符号添加,小标题间不空行)
①(宋体,五号,居左,序号采用特殊符号添加,小标题间不空行)
另:任意标题,当与表格或图片紧连时,按五号字大小空一行
B 表格格式:表格名称位于表格下方。
表格本身(全部采用1/2榜实体黑线,位于文档中间,且尽量不让表格分页,必须分页时,保证任一格中内容不分页),表格内的分类标题(五号,宋体,加粗,居中),表格内文字(五号,宋体,居中)表格内文字通过调整表格框架使四字以下(含四字)文字尽量在一行中,若必须分行的则上行两字,下行一字或两字;五字以上(含五字)可分行。
表格中若存在图片,图片大小不超过六行五号字;图片和文字同时存在的,文字位于图片上方(五号,宋体,居中)。
C 图片格式:名字位于图片下方。
不需文字解释的,图片居中,根据页面调整大小;需要文字解释的,图片位于文档左边,文字采用四周型环绕,图片大小根据文字调整。
D 文中的图、表、公式、算式等,一律用阿拉伯数字编序号(图的名称位于图的下方,表的名称位于表格上方,字体采用宋体,五号,加粗,居中。图、表序号根据其所在的大层次标题序号和在改层次的序号定)。如:
图、表、公式
E 注:论文中对某一问题、概念、观点等需简单解释、说明、评价、提示等,如不宜在正文中出现,采用加注的形式(注的编排序号用①、②、③依次标示在需加注处,以上标形式表示);具体说明文字列于同一页内的下端,并用横线与正文分隔开(宋体,小五号,居左)。
【参考文献】: 应具有权威性,并注意引用最新的文献。与正文间按五号字大小空两行。(参考文献四字为黑体,五号,加粗,加中括号,中括号采用中文形式;其他为宋体,小五号,序号的中括号采用英文形式,每项用英文形式句号隔开)
著作:[序号]作者.译者.书名.版本.出版地.出版社.出版时间.
期刊:[序号]作者.译者.文章题目.期刊名.年份.卷号(期数)
会议论文集:[序号]作者.译者.文章名.文集名 .会址.开会年.出版地.出版者.出版时间.
网址:[序号] 作者.文献名称.网站名称.网址
整篇论文其他注意部分:
A页面设置,采用A4大小竖版纸面,上下页边距厘米,左右页边距厘米,所有图片、表格等都不得超过边距。
B文章所有页面加入页眉,页眉为论文名称
C文章所有页面不加页码
D英文采用Times New Roman
E拉丁文采用Times New Roman,斜体
F标点为中文,半角
G正文内全为单倍行距,标题间空行除外
摘要: 本文从Chomsky在语言学研究过程中所采用的理想化模式入手,认为Chomsky为了使研究变得简单,便将与语言关系紧密的社会因素摒除在研究范围之外,这是一种不可取的理想模式。接下来本文从两个主要方面阐述了理想化模式不可取的原因:
一是语言作为一种符号系统,只有在社会的'环境下才能具有完整的意义。二是语言作为一种社会结构,无论是它的产生还是发展过程,都在不断地和社会发生着相互作用。故而只要是研究语言学,我们就不能将社会因素理想化。至于什么因素可以暂时不予考虑,这仍有待进一步的研究。
关键词 :
理想化,符号系统,社会结构,语言与社会的相互作用
1.统一使用A4纸,单面打印;
2.封面:封面栏目要求打印;
3.字体全部用宋体;主标题行要求用小二号字加黑,次标题用三号字加黑,再次标题用小三号字加黑,以此类推。正文内容要求用小四号字;行距为单倍;页边距左为3㎝、右为2㎝、上为㎝、下为㎝;
4.用阿拉伯数字连续编排页码,页码放在右下角,由正文首页开始编排,封面封底不编入页码;
5.题目:简要、明确,一般不超过20字;
6.中英文摘要和关键词:中文摘要一般不超过300字;关键词为3~8个,另起一行,排在摘要下方,词与词之间以分隔;英文摘要和英文关键词要求与中文摘要和中文关键词一致;摘要和关键字用小四号字;
7.目录:由论文的章节以及附录、参考文献等的序号、题名和页码组成(课程论文不列入);
8.结构层次序数的表示方法:第一层为1,第二层为,第三层为,第四层为,正文中序号用①表示,不分段;
9.附表与插图:附表要有表号、表题;插图要有图号、图题;所有的图表都应具有自明性,即不阅读正文,就可理解图表的意思;
10.致谢:在正文后对单位和个人等表示感谢的文字(课程论文不列入);
11.附录:是正文主体的补充项目,并不是必需的。下列内容可以作为附录:(课程论文不列入) (1)为了整篇材料的完整,插入正文又有损于编排条理性和逻辑性的材料; (2)由于篇幅过大,或取材于复制件不便编入正文的材料; (3)对一般读者并非必须阅读,但对本专业人员有参考价值的资料;
12.参考文献:
(1)参考文献的标注方法:采用顺序编码制,即按照文章正文部分(包括图、表及其说明)引用的先后顺序连续编码;标注的符号为[ ],作为上标,在标点符号前使用;
(2)参考文献的写作格式为:
①参考文献是连续出版物时,其格式为:[序号] 作者.题名.刊名,出版年份,卷号(期号):引文所在的起止页码
②参考文献是专著时,其格式为:[序号] 作者.书名.版本(第1版不标注).出版地:出版者,出版年.引文所在的起止页码
③参考文献是论文集时,其格式为:[序号] 作者.题名.见(英文用In):主编.论文集名.出版地:出版者,出版年.引文所在起止页码
④参考文献是学位论文时,其格式为:[序号] 作者.题名:〔博士、硕士或学士学位论文〕.保存地点:保存单位,年份
⑤参考文献是专利时,其格式为:[序号]专利申请者.题名.专利国别,专利文献种类,专利号.出版日期
参考文献著录中需要注意:
个人作者(包括译者、编者)著录时一律姓在前,名在后,由于各国(或民族)的姓名写法不同,著录时应特别注意课件下载,名可缩写为首字母(大写),但不加编写点。另外,作者(主要责任者)不多于3人时要全部写出,并用,号相隔;3人以上只列出前3人,后加等或相应的文字如et al。等或et al前加,号。
装订格式
1.课程论文一律左边装订成册;
2.装订顺序为:封面、题目、论文摘要与关键词、正文、参考文献。
黄金哇塞赛
人脸识别技术包含三个部分:
一、人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。
一般有下列几种方法:
1、考模板法。首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸。
2、人脸规则法。由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸。
3、样品学习法。这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器。
4、肤色模型法。这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
5、特征子脸法。这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
二、人脸跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
三、人脸比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。
主要采用特征向量与面纹模板两种描述方法:
1、特征向量法。该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
2、面纹模板法。该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
人脸识别技术的应用场景:
人脸识别技术主要用于身份验证,常见的场景有小区、楼宇、校园、工厂、园区、银行等,如:智能门禁、人脸闸机、人脸考勤、智能门锁等。通过人脸识别验证身份,来保障相关场所的安全,也减少了人工审核的成本。
在安防监控中,人脸识别也意义重大,比如公众场所(地铁站、车站、街道、酒店等)的安防布控、公安部追捕嫌疑犯等。基于公众场所的安防监控摄像头,通过抓拍人脸并将结果上传公安部网络,与嫌疑犯人脸进行比对,协助公安人员的执法工作。
人脸识别技术是人工智能领域的关键技术,在智能视频监控系统具有十分广泛的应用前景。TSINGSEE青犀视频也将以AI智能检测与识别技术为核心,持续研发多场景下的智能业务系统及平台,向AI领域深耕。
可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本
人脸识别的实现方法如下: (1)参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸。 (
Viola-Jones方法,人脸识别研究组。《智能环保垃圾处理设备》发布的公告得知人脸识别参考文献为Viola-Jones方法,人脸识别研究组。包括人脸检测,人
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白