• 回答数

    7

  • 浏览数

    268

remotesummer
首页 > 学术论文 > 应用生态学报是a1吗

7个回答 默认排序
  • 默认排序
  • 按时间排序

往事随风@遗忘

已采纳

当然是,而且影响因子也挺高 我在上面发表过论文,算一级学报应该

337 评论

慧慧在济南

A类、B类期刊等的划分是各单位根据相关政策文件,结合自身研究特点,从国内外核心期刊数据库进行筛选,把和本单位研究方向结合相近的、办刊质量好的刊物,划归为A类期刊,其次为B类期刊,再次为C类期刊,以此类推。

由此可见,这类刊物是各个单位根据自己的科研考核标准制定的,不同单位制定标准也是不一样的。A类期刊也并不一定是核心期刊,在有些单位,没有被任何核心数据库收录的报刊也会被划为本单位的A类期刊,比如人民日报、光明日报、经济日报等。

获取刊物级别很简单,一般权威数据库中,以及期刊的官网中,对刊物的级别都有所体现,一般知网、新闻出版总署网站、万方等平台都是非常权威的数据库,通过这些平台都是可以检索到期刊的详细信息的,期刊的官网需要作者稍加辨别,期刊真正的官网信息才可信,需要特别警惕仿制的假官网。

常见的国内刊物级别

有部级、省级、国家级、核心级几类。发表难度是逐渐上升的,选择刊物不必刻意追求高级别,高级别刊物固然比低级别刊物要好,但并不是适合所有人,也不是谁都可以轻易发表的,比如核心期刊,对作者的要求是非常高的,普通作者没有足够的积累是很难发表的。

刊物级别的选择首先要参考具体文件,职称文件或者学校的具体要求以及其他方面的文件,了解清楚自己需要发表什么级别的期刊,再去做选择,能实现自己的目标即可。

207 评论

茜茜Julie

张勇1,苏新1,陈芳2,蒋宏忱1,陆红峰2,周洋2,王媛媛1

张勇(1981-),男,博士研究生,主要从事海洋地质微生物研究。

1.中国地质大学地质微生物实验室,北京100083

2.广州海洋地质调查局,广州510760

摘要:利用分子生物学技术,分析南海北部神狐海域天然气水合物潜力区HS-373PC岩心表层沉积物中古菌多样性,从沉积物中提取总DNA并扩增古菌16S rRNA基因序列,对克隆文库进行系统发育分析。结果显示:所有古菌序列均属于泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)。其中泉古菌以C3为主要类群,另有少量序列属于marine benthic group (MBG)-B,MBG-C、marine crenarchaeotic group I (MGI)、marine hydrothermal vent group (MHVG)和novel group of crenarchaea(NGC);广古菌以MBG-D为主,其他序列分别属于Unclassified Euryarchaeotic Clusters-1/2 (UEC-1/2)。

关键词:古菌多样性;16S rRNA;海洋沉积物;天然气水合物调查区;神狐海域;南海北部陆坡

Archaea Diversity in Surface Marine Sediments from Shenhu Area,Northern South China Sea

Zhang Yong1,Su Xin1,Chen Fang2,Jiang Hongchen1,Lu Hongfeng2,Zhou Yang2,Wang Yuanyuan1

Laboratory,School of Ocean Sciences,China University of Geosciences,Beijing 100083,China

Marine Geological Survey,Guangzhou 510760,China

Abstract:Archaeal diversity in the surface sediments from Shenhu Area in South China Sea was studied with the use of 16S rRNA gene phylogenetic the retrieved archaeal clone sequences could be grouped into Marine Benthic Group(MBG)-B,-C and-D,Novel Group of Crenarchaea,C3,Marine Hydrothermal Vent Group,Marine Crenarchaeotic Group I,and unclassified euryarhaeotic group,among which MBG-D and C3 were the most predominant groups in the Euryarchaeota and Crenarchaeota, results indicated that archaea were abundant and diverse in surface sediments from the northern South China Sea.

Key words:archaeal diversity; 16S rRNA; marine sediments; gas hydrate exploration area; shenhu area;northern south China Sea

0 引言

海洋生态环境独特,具有高盐、高压、低温、寡营养和光照强度变化大等特点。生活在这一复杂环境中的微生物为适应独特环境条件,在物种类型、代谢类型、功能基因组成和生态功能上形成丰富的多样性[1],其中原核微生物主要为古菌和细菌两大类群[2]。早期有关古菌存在及多样性的研究仅局限于温度、p H和盐度比较极端与厌氧的环境下,在这些极端环境中发现了超嗜热菌、极端嗜酸菌、极端嗜盐菌和产甲烷菌。目前已经从热泉、热液喷孔、硫质喷孔、盐湖、高碱湖、下水道消化池和瘤胃这些典型的环境中分离出了古菌[2]。随着分子生物学技术的发展,古菌研究的范围逐渐扩大,常见的环境比如海水[3]、盐湖水[4]和土壤[5-6]中,都发现有大量的古菌存在。随着研究领域的扩大,对古菌的分布、新陈代谢的多样性、从极端环境到普通环境的垂向变化以及在生态系统中所起作用的研究显得愈加重要。海洋深部生物圈内的古菌群落已经作为特定地质微生物标志,被用来指示过去和现代海洋的地球化学变化和地质环境的变迁[7]。

南海神狐海域天然气水合物调查研究区位于南海北部陆坡中段神狐暗沙东南海域附近,即西沙海槽与东沙群岛之间海域。根据野外地温梯度测量和室内沉积物样品的热导率测量结果以及钻探站位温度原位测量结果表明,神狐海域研究区的地温梯度为45~℃/km,其热流和地温梯度处于中—低范围,该区域流体相对活跃,断层发育,有利于天然气水合物的发育[8]。2006年我国在该区实施钻探,已经成功获取了天然气水合物样品[8]。笔者对神狐海域天然气水合物调查区HS-373PC样品岩心表层5~20 cm深度沉积物开展了古菌多样性的调查,并初步探讨它们与沉积物中地质环境的相互作用。

1 材料方法

样品采集

2006年夏, “ 海洋四号”调查船在南海北部神狐海域(19° ' N,115° ' E)水深1 402 m处获得重力活塞岩心HS-373PC样品,岩心全长928 cm。本文通信作者随船考察,并采取微生物样。微生物取样间隔为50 cm,取样后在无菌箱中切除表面沉积物,内部样品置于无菌袋保存于液氮中,航次结束后用干冰运至实验室于-20℃保存。实验室操作时,切除表面沉积物以防止污染。

用于微生物计数的样品采集参考国际大洋钻探(ODP:ocean drilling program)201和204航次中所应用的微生物样品处理方法[9-10],在无菌操作箱中进行:用灭菌手术刀切除岩心外部沉积物,灭菌注射器取约1 cm3样品,加入9 m L高温灭菌并过滤除菌( mm)的海水,加入终浓度为4%的甲醛固定,置于4℃保存。航次结束后低温运到实验室4℃保存。

微生物计数(acridine orange direct count,AODC)

样品细胞计数参照吖啶橙直接染色计数法[11]改进。样品漩涡震荡10 min,取1 m L加入9 m LPBS( mol/L Na Cl, mol/L KH2PO4, mol/L K2HPO4,灭菌)缓冲液,震荡5min,400r/min离心5 min,静置1 h充分沉淀,取上清液加入1%的吖啶橙5m L,黑暗中染色15 mm,过滤到孔径μm的聚碳酸酯膜(Whatman,UK)上,用10 m L PBS缓冲液冲洗滤膜,置于载玻片上,于荧光镜下观察计数。

DNA提取与16Sr DNA的扩增

称取约1 g样品,使用Ultra Clean soil DNAkit (Mo Bio,Solana Beach,Calif.,US)试剂盒提取总DNA,溶于灭菌的纯水中。

古菌扩增引物为:Arch21F(5’-TTC YGG TTGATC CYG CCRGA-3’,Y=A,C or G;R=A or G)和Arch958R(5’-YCC GGC GTT GAM TCCATTT-3’,M=Aor C)[3]。PCR反应条件:95℃变性7min,然后94℃变性30 s,54℃退火30 s,72℃延伸个循环,最后72℃延伸10 min。产物经1%的琼脂糖凝胶电泳检测后切胶回收。

克隆文库的构建与5序列分析

纯化回收后的PCR产物连接到p GEM-T Easy Vector(Promega,US)上,转化感受态细胞。取适量转化后培养的细胞涂到含氨苄青霉素、X-Gal和IPTG的LB平板上, 37℃培养过夜,12~16 h后取出,置于4℃冰箱。

随机挑选部分白色转化子,接种到上述LB平板上,37℃培养后,使用引物M13-RV (5'-CAG GAA ACA GCT ATG AC-3')和M13-47(5'-GTT TTC CCA GTC ACG AC-3')做菌落PCR。反应条件如下:95℃变性10min,加入 Taq酶,然后94℃变性30 s,54℃退火30 s,72℃延伸2min,35个循环,最后72℃延伸10min。扩增产物经1%的琼脂糖凝胶电泳检测后,挑选部分样品进行测序。

所得序列用Sequencer (Gene Codes Corporation,US)软件进行分析,经Bio Edit软件编辑后,以97%的序列相似性作为划分标准[12],使用DOTUR软件()选出运算分类单位(operational taxonomic unit,或OTU),用a Rarefact Win软件(~strata/.)得出饱和曲线。所得OTU对应序列输入NCBI数据库,在线使用BLAST (basic local alignment search tool)对比序列,采用Neighbor-Joining建树方法构建系统发育树。

本研究中所得到的古菌16Sr DNA序列在Gen Bank核酸数据库里的接受序列号为HS373A1-HS373A98(FJ896063-FJ896103); HS373A107-HS373A16(GU181294-GU181316)。

2 结果与分析

沉积物微生物计数

表层沉积物中的总微生物计数使用吖啶橙染色直接计数法,计数结果显示微生物的数量约为×107cells/g沉积物(湿重)。

古菌多样性分析

所测序列经筛选后得到132个有效序列,共分为64个OTU。文库覆盖率C=1-(n/N) (其中n为OTU中只出现一个克隆子的数目,N为总序列数)为%。使用a Rarefact Win软件分析得到克隆文库的饱和曲线(图1)。

图1 南海北部HS-373PC岩心表层沉积物中古菌16SrRNA基因序列饱和曲线

该132个序列均属于未培养类型,同源序列大多数来自海洋沉积物,分别属于泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)两大类(图2)。其中泉古菌以C3[13]为主(占总序列的24%),其他序列属于marine benthic group (MBG)-B[14],MBG-C[15],marine crenarchaeotic group Ⅰ(MGI)[16],marine hydrothermal vent group (MHVG)[17]和novel group ofcrenarchaea(NGC)[15]。广古菌以MBG-D[13]为主(占总序列的16%),其他序列属于unclassified euryarchaeotic clusters (UEC)-1/2。各类群所占比例见图3。

泉古菌中包含92个克隆序列(占总序列的70%)。其中以C3为主要类群,包含32个克隆,同源序列来源广泛,其中大多数来自南海沉积物中,相似性在97%~99%之间。其他同源性最高的序列来自太平洋秘鲁边缘海(ODP Leg 201)和喀斯喀特边缘海(ODP Leg 204)含有水合物的沉积物[13]、墨西哥湾沉积物(AB448792)和维多利亚港沉积物(EF203609)。MBG-B(也称为Deep-Sea Archaeal Group,DSAG)[17-19]类群最先发现于深海沉积物和热液口,该类群广泛存在于多种深海环境中[20],文库中有2个克隆属于该类群,同源序列来自鄂霍次克海冷泉沉积物[15]、墨西哥湾沉积物(IODP Site 1230)和Juan de Fuca海岭沉积物[15],相似性为98%~99%,这几个地区沉积物均发现水合物存在。20个克隆属于MBG-C,同源序列(相似性为95%~99%)来自深海沉积物和红树林土壤。12个克隆属于MGI,同源序列源自南海沉积物[16,21]和北冰洋沉积物(FJ571813),相似性在97%~99%之间。有4个克隆属于MHVG,与来自墨西哥湾沉积物的克隆(AB432999)相似性最高(99%)。NGC类群有20个克隆,其中相似性最高(相似性98%)的序列(EU713901)来自鄂霍次克海[15],其他克隆相似性最高的序列(DQ984855)和(AB433026)分别来自南海沉积物和墨西哥湾深海沉积物,相似性仅为89%和92%。

广古菌包含40个(占总序列的30%)克隆序列。其中MBG-D是优势类群,有21个克隆属于该类群,分为13个OTU。其中大部分克隆同源序列来源于南海[16,21]、智利瓦斯科湖、Skan湾[22]、墨西哥湾、日本南海海槽[23]、鄂霍次克海[15]和秘鲁边缘(ODP Leg 201)有机含量丰富不含水合物的深海沉积物[13]。另2个克隆相似性最高的序列(AF068817)来自大西洋中脊热压喷口[24],同源性只有86%。19个克隆组成UEC类群,9个克隆属于UEC-1,同源序列来源于南海沉积物、Baby Bare海湾热液喷口[25]和Skan湾[22]。10个克隆属于UEC-2,相似性最高的序列来源于南海[26]和Santa Barbara海盆[27],相似性在96%~99%之间。

3 讨论

海底沉积物表层有机质含量相对比较丰富,为微生物的生长繁殖提供充足的物质能量。据统计太平洋表层沉积物中微生物(包括细菌和古菌)丰度为108~109cells/cm3沉积物[28],有活性的微生物丰度为108cells/cm3沉积物[29]。本文HS-373PC岩心表层沉积物使用吖啶橙染色计数获得的微生物的数量,与南海南沙盆底陆坡沉积物中使用荧光原位杂交计数的结果[16]相比数量偏低。

图2 南海北部HS-373PC岩心表层沉积物中古菌16SrRNA基因序列系统发育树

图3 南海北部HS-373PC岩心表层沉积物古菌文库中各类群所占的比例

(其中“Un”为未分类的类别)

HS-373PC岩心的表层沉积物中古菌多样性虽然比较高,但从序列类别来说,大部分所在的类群在其他海区沉积物中都有发现[13,15,17-20,22-24]。尤其是大多数序列与南海其他地区沉积物中所报道的古菌类群[16,21,26]具有很高的相似性。而且在群落组成结构等方面比较起来还是有所不同。

与南海其他地区古菌类群相比,如在西沙海槽表层沉积物中古菌以MGI为主要类群(),其他包括TMEG(terrestrial miscel1aneous euryarch-aeotic group)、MBG-A/B/D、C3和NEG(novel euryarchaeotic group)类群以及17%的UEC克隆[21]。南海琼东南沉积物中古菌以MCG和MBG-B(DSAG)为主要类群(各占27%),其他还存在MBG-D、SAGMEG、TMEG和3个克隆的甲烷八叠球菌(Methanosarcinales)以及29%的UEC克隆[26]。MGI类群常发现于海洋和陆地环境,在海洋环境中,广泛分布于表层和次表层沉积物中,该类群可能兼性自养或者代谢类型多样[30]。本文神狐海域水合物潜力区的表层沉积物中的古菌,也有MGI类群出现,该类群所占比例仅为9%。MBG-B类群最先发现于热液口深海沉积物,目前在深海海底沉积物中均发现此类群[20],该类群在底部甲烷上涌流的上层硫酸盐还原带沉积物中含量丰富,可能在硫酸盐还原和甲烷氧化中起重要作用[31];此类群在南海琼东南盆地表层沉积物中所占比例较高,在神狐海域表层沉积物中,只有2个克隆出现,测试表明该深度甲烷体积分数较低(约40×10-6),而硫酸根质量浓度较高(2 655 mg/L),说明该深度甲烷氧化与硫酸盐还原程度还比较低。

与上述南海所报道2个地区古菌多样性相比,神狐海域HS-373PC表层沉积物中古菌C3类群的克隆明显占优。该类群尚未有培养种类,具体代谢类型还不清楚。类群中相似性最高的序列来自太平洋秘鲁边缘(ODP Leg 201)和喀斯喀特边缘海(ODP Leg 204)含有水合物的沉积物。

西太平洋日本南海海槽含有天然气水合物的沉积物中,古菌多样性很低,只发现有3种类群的古菌类群,分别与脱硫球菌、热网菌和热球菌相似,没有发现其他类群[32]。东太平洋美国俄勒冈州外海水合物海岭的ODP 204航次1244、1245和1251站位有水合物存在的表层沉积物岩心中,古菌以MBG-B(DSAG)类群为主[13](约占50%~100%)。而位于东太平洋赤道海域ODP 201航次几个地质环境不同钻探站位的表层沉积物中古菌群落结构不同,其中1230站位(含天然气水合物)古菌以MBG-B(DSAG)类群为主[13];1227站位(不含水合物但有机质含量丰富)古菌以MCG和SAGMEG为主要类群,不含MBG-B(DSAG)类群[13];而1225站位(不含天然气水合物且有机含量低)古菌以MGI和MBG-A为主要类群,但含少量MBG-B(DSAG)类群[13]。由此可见,即使是在发现了天然气水合物的地区,表层样中古菌的类型和群落结构也随海域或同海域不同站位地质环境而变化。神狐海域HS-373PC表层沉积物古菌的优势类群和上述地区明显不同。前人对南海表层沉积物有机质含量的总结表明,神狐地区属于有机质含量较低的地区[33]。因此,如果就HS-373PC表层沉积物中有机质含量低而古菌群落含少量MBG-B类群这2点来看,和东太平洋赤道海域ODP 201航次1225站位具有一定的相似性。

该岩心采集的区域属于已确定的天然气水合物潜力区,一系列的数据强烈暗示该区沉积物深部存在着天然气水合物[8]。但对该岩心表层沉积物中古菌多样性分析后发现,古菌中没有明显指示天然气水合物存在的类群出现,可能是本文所取的样品处于沉积物表层,各种参数变化不明显,在古菌多样性上没有明显的显示。对于HS-373PC岩心中微生物多样性和地质环境的关系进一步的探讨,还有待于建立在未来获得更多微生物和地质环境分析的基础上。

参考文献

[1]任立成,李美英,鲍时翔.海洋古菌多样性研究进展[J].生命科学研究,2006,10(2):67-70.

[2]Chaban B,Ng S Y,Jarrell K Habitats-From the Extreme to the Ordinary[J].Canadian Journal Microbiology,2006,52:73-116.

[3]De lo ng E in Coastal Marine Environments[J].Proceedings of the National Academy of Sciences,1992,89:5685-5689.

[4]Jiang H C,Dong H L,Yu B S,et of Putative Marine Benthic Archaea in Qinghai Lake,Northwestern China[J].Environmental Microbiology,2008,10(9):2355-2367.

[5]Walsh D A,Papke R T,Doolittle W Diversity Along a Soil Salinity Gradient Prone to Disturbance[J].Environmental Microbiology,2005,7(10):1655-1666.

[6]Yan B,Hong K,Yu Z Communities in Mangrove Soil Characterized by 16S rRNA Gene Clones[J].The Journal of Microbiology,2006,43(5):566-571.

[7]Inagaki F,Takai K,Komatsu T,et of Archaea:Geomicrobiological Record of Pleistocene Thermal Events Concealed in a Deep-Sea Subseafloor Environment[J]Extremophiles,2001,5(6):385-392.

[8]吴能友,张海A,杨胜雄,等.南海神狐海域天然气水合物成藏系统初探[J]天然气工业,2007,27(9):1-6.

[9]Shipboard Scientific Notes[C]//D'Hondt S,Jogensen B B,Miller D J,et of the Ocean Drilling Program,Intial Station,2003,201:1-103.

[10]Shipboard Scientific Notes[C]//Trehu A M,Bohrmann G,Rack F,et of the Ocean Drilling Program,Intial A&M University,2003,204:1-102.

[11]Bottomley P Microscopic Methods for Studying Soil Microorganisms[C]//Weaver of Soil Analysis,Part and Biochemical Book Series Science Society of America,Madison,.

[12]Humayoun S B,Bano N,Hollibaugh J Distribution of Microbial Diversity in Mona Lake,Amermictic Soda Lake in California[J].Applied and Environmental Microbiology,2003,69:1030-1042.

[13]Inagaki,F,Nunoura T,Nakagawa S,et Distribution and Diversity of Microbes in Methane Hydrate Bearing Deep Marine Sediments on the Pacific Ocean Margin[J].Proceedings of the National Academy of Sciences,2006,103:2815-2820.

[14]Mason O U,Di Meo-Savoie C,Van Nostrand J D,et Diversity,Distribution,and Insights Into Their Role in Biogeochemical Cycling in Marine Basalts[J].The ISME Journal,2009,3(2):231-242.

[15]Dang H Y,Luan X,Zhao J,et and Novel Nif H and NifH-Like Gene Sequences in the Deep-Sea Methane Seep Sediments of the Okhotsk Sea[J].Applied and Environmental Microbiology,2009,75(7):2238-2245.

[16]李涛,王鹏,汪品先.南海南部陆坡表层沉积物细菌和古菌多样性[J].微生物学报,2008,48(3):323-329.

[17]Inagaki F,Suzuki M,Taikai K,et Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk[J].Applied and Environmental Microbiology,2003,69(12):7224-7235.

[18]Vetriani C,Jannasch H H,Mac Gregor B J,et Structure and Phylogenetic Characterization of Mari ne Benthic Archaea in Deep-sea Sediments[J].Applied and Environmental Microbiology,1999,65(10):4375-4384.

[19]Takai K ,Horikoshi Diversity of Archaea in Deep-Sea Hydrothermal Vent Environments[J].Genetics,1999,152:1285-1297.

[20]Sorensen K,Teske Communities of Active Archaea in Deep Marine Subsurface Sediments[J].Applied and Environmental Microbiology,2006,72(7):4596-4603.

[21]李涛,王鹏,汪品先.南海西沙海槽表层沉积物微生物多样性[J]生态学报,2008,28(3):1166-1173.

[22]Kendall M M,Wardlaw G D,Tang C F,et of Archaea in Marine Sediments from Skan Bay,Alaska,Including Cultivated Methanogens,and Description of Methanogenium Boonei [J].Applied and Environmental Microbiology,2007,73(2):407-414.

[23]Nunoura T,Oida H,Toki T,et of Mcr A by Quantitative Fluorescent PCR in Sediments from Methane Seep of the Nankai Trough[J].FEMS Microbiology Ecology,2006,57(1):149-157.

[24]Reysenbach A L,Longnecker K,Kirshtein Bacterial and Archaeal Lineages from an in Situ Growth Chamber Deployed at a Mid-Atlantic Ridge Hydrothermal Vent[J].Applied and Environmental Microbiology,2000,66(9):3798-3806.

[25]Huber J A,Hohnson H P,Butterfield D A,et Life in Ridge Flank Cru stal Fluids[J].Environmental Microbiology,2006,8(1):88-99.

[26]Jiang H C,Dong H L,Ji S,et Diversity in the Deep Marine Sediments from the Qiongdongnan Basin in South China Sea[J].Geomicrobiology Journal,2007,24:505-517.

[27]Harrison B K,Zhang H,Berelson W,et in Archaeal and Bacterial Diversity Associated with the SulfateMethane Transition Zone in Continental Margin Sediments (Santa Barbara Basin,California)[J].Applied and Environmental Microbiology,2009,75(6):1487-1499.

[28]Parkes R J,Cragg B A,Bale S J,et Bacterial Biosphere in Pacific Ocean Sediments[J].Nature,1994,371:410-413.

[29]Schippers A,Neretin L N,Kallmeyer,J,et Cell of the Deep Sub-Seafloor Biosphere Identified as Living Bacteria[J].Nature,2005,433:861-864.

[30]Teske Community Composition in Deep Marine Subsurface Sediments of ODP Leg 201:Sequencing Surveys and Cultivations[C]//Jorgensen B B,D'Hondt S,Miller D of the Ocean Drilling Program,Scientific Results 2006,201,1-19.

[31]Biddle J F,Lipp J S,Leverd M A,et Archaea Dominate Sedimentary Subsurface Ecosystems off Peru.[J].Proceedings of the National Academy of Sciences,2006,103(10):3846-3851.

[32]Reed D W,Fujita Y,Delwiche M E,et Communities from Methane Hydrate-Bearing Deep Marine Sediments in a Forearc Basin[J].Applied and Environmental Microbiology,2002,68(8):3759-3770.

[33]苏新,陈芳,于兴河,等.南海陆坡中世纪以来沉积物特性与气体水合物分布初探[J].现代地质,2005,19(1):1-13.

317 评论

谈情伤感情

核心期刊——某学科(或某领域)的核心期刊,是指那些发表该学科(或该领域)论文较多、使用率(含被引率、摘转率和流通率)较高、学术影响较大的期刊。 核心期刊”是国内几所大学的图书馆根据期刊的引文率、转载率、文摘率等指标确定的。确认核心期刊的标准也是由某些大学图书馆制定的,而且各学校图书馆的评比、录入标准也不尽相同。新闻出版管理部门也未参加过此类评选活动 目前国内有7大核心期刊(或来源期刊)遴选体系:北京大学图书馆“中文核心期刊”、南京大学“中文社会科学引文索引(CSSCI)来源期刊”、中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”)、中国社会科学院文献信息中心“中国人文社会科学核心期刊”、中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”、中国人文社会科学学报学会“中国人文社科学报核心期刊”以及万方数据股份有限公司正在建设中的“中国核心期刊遴选数据库”。 如果该期刊被同时被两种核心期刊遴选体系认定为核心,那么该期刊就是双核心期刊了。比如,既入选“全国中文核心期刊”,又入选“中国人文社会科学核心期刊”。263医学论文发表网专业提供论文发表服务,并提供大量全科论文,如有业务需求请咨询网站客服人员!

328 评论

jjgirl2008

看看这个排名,位列本类第十名:Q综合性生物1.生态学报 2.生物化学与生物物理学报 3.遗传学报 4.中国生物化学与分子生物学报 5.生物化学与生物物理进展 6.微生物学报 7.生物物理学报 8.遗传 9.生物工程学报 10.应用生态学报 11.生理学报 12.中国科学.C辑,生命科学 13.古生物学报 14.微生物学通报 15.水生生物学报 16.菌物系统(改名为:菌物学报) 17.生物多样性 18.生物工程进展(改名为:中国生物工程杂志) 19.实验生物学报 20.生命的化学 21.古脊椎动物学报 22.微体古生物学报 23.生态学杂志 24.生物数学学报

236 评论

黑崎龍少

核心期刊是某学科的主要期刊。一般是指所含专业情报信息量大,质量高,能够代表专业学科发展水平并受到本学科读者重视的专业期刊。

有关专家研究发现,在文献情报源的实际分布中,存在着一种核心期刊效应,即某一专业的世界上的大量科学论文,是集中在少量的科学期刊中。

期刊标准

确定核心期刊的标准可以概括为以下几项:

1、主办机构的权威性,

2、文章作者的权威性,

3、文章的被引用率及文献的半衰期(测定文章内容新颖性的指标,一般科技文献半衰期较短,社科文献则较长)。简单地说,核心期刊是学术界通过一整套科学的方法,对于期刊质量进行跟踪评价,并以情报学理论为基础,将期刊进行分类定级,把最为重要的一级称之为核心期刊。

316 评论

姜大大夫人

应用生态学报期刊级别为核心期刊,出刊周期为月刊,期刊创办于1990年。应用生态学报是中国科学院主管,中国生态学学会和中国科学院沈阳应用生态研究所主办的学术性期刊。《应用生态学报》主要设有研究论文、综合评述等栏目,内容主要包括森林生态学、农业生态学、草地生态学、渔业生态学、海洋与湿地生态学、资源生态学、景观生态学、全球变化生态学、城市生态学、产业生态学、生态规划与生态设计、污染生态学、化学生态学、恢复生态学、生态工程学、生物入侵与生物多样性保护生态学、流行病生态学、旅游生态学和生态系统管理等。《应用生态学报》被“中国期刊方阵”(双效期刊)、“中国科技核心期刊”、“中文核心期刊”,被《中国科学引文数据库》(CSCD,核心期刊)、《中国科技论文与引文数据库》(CSTPCD)、《中国学术期刊综合评价数据库》(CAJCED)、《万方数据库》、《中国期刊全文数据库》(GJFD)、《中国学术期刊全文数据库》、《中文科技期刊文摘数据库》、美国《生物学文摘》(BA)、《化学文摘》(CA)、英国《生态学文摘》(EA)、日本《科学技术文献速报》(CBST)和俄罗斯《文摘杂志》(AJ)等中国内外十多家权威检索系统和数据库收录

300 评论

相关问答

  • 应用生态学报是a吗

    希望可以帮到你E-mail: QQ:735191219

    tongtongaiya 3人参与回答 2023-12-07
  • 应用生态学报是几类期刊

    是吧。Q综合性生物1.生态学报2.生物化学与生物物理学报3.遗传学报4.国生物化学与分子生物学报5.生物化学与生物物理进展6.微生物学报7.生物物理学报8.遗传

    xiao叶子0118 3人参与回答 2023-12-09
  • 应用生态学报缩写

    1. 中文核心期刊就是我们平常说的核心期刊,是由北京大学图书馆和北京高校图书馆期刊工作研究会合编、北京大学出版社出版的《中文核心期刊要目总览》发布的期刊,每4年

    喊姐姐~给糖吃 7人参与回答 2023-12-12
  • 应用生态学报和生态学杂志

    当然是啊,它是国内生态学类杂志中最好的之一,算是一级学报了

    颖的时光 4人参与回答 2023-12-06
  • 应用生态学报格式

    投稿要求对字号是没有非常苛刻的要求的,正文五号字,标题三号字,这是非常普遍的一个格式。学报也好,期刊也好更看重的是文章的质量,学术价值的高低,祝好运。

    我大旗网 4人参与回答 2023-12-12