• 回答数

    4

  • 浏览数

    233

Alice兔籽宝宝
首页 > 学术论文 > 边缘检测相关论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

百合妖妖1990

已采纳

摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。 关键词 DM642;Sobel算子;程序优化;图像边缘检测 1 引言 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。 近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。2 Sobel边缘检测算法的改进 经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。 图像加权中值滤波 由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。 增加方向模板 除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。 边缘的定位及噪声的去除 通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。图1 边缘检测8个方向模板图2 系统结构图3 基于TMS320DM642的图像处理的设计及算法优化 TMS320DM642功能模块及图像处理系统的硬件结构 DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。 TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相环12倍频后产生600 MHz的工作频率。DM642采用了2级缓存结构(L1和L2),大幅度提高了程序的运行性能。片内64位的EMIF(External Memory Interface)接口可以与SDRAM、Flash等存储器件无缝连接,极大地方便了大量数据的搬移。更重要的是,作为一款专用视频处理芯片,DM642包括了3个专用的视频端口(VP0~VP2),用于接收和处理视频,提高了整个系统的性能。此外,DM642自带的EMAC口以及从EMIF 口扩展出来的ATA口,还为处理完成后产生的海量数据提供了存储通道。本系统是采用瑞泰公司开发的基于TI TMS320DM642 DSP芯片的评估开发板——ICETEK DM642 PCI。在ICETEK DM642 PCI评估板中将硬件平台分为五个部分,分别是视频采集、数据存储、图像处理、结果显示和电源管理。视频采集部分采用模拟PAL制摄像头,配合高精度视频A/D转换器得到数字图像。基于DSP的视频采集要求对视频信号具备采集,实时显示、对图像的处理和分析能力。视频A/D采样电路—SAA7115与视频端口0或1相连,实现视频的实时采集功能。视频D/A电路—SAA7105与视频口2相连,视频输出信号支持RGB、HD合成视频、PAL/NTSC复合视频和S端子视频信号。通过I2C总线对SAA7105的内部寄存器编程实现不同输出。 整个系统过程由三个部分组成:图像采集—边缘处理—输出显示,如图2所示。摄像头采集的视频信号经视频编码器SAA7115数字化,DM642通过I2C总线对SAA7115进行参数配置。在SAA7115内部进行一系列的处理和变换后形成的数字视频数据流,输入到核心处理单元DM642。经过DSP处理后的数字视频再经过SAA7105视频编码器进行D/A转换后在显示器上显示最终处理结果。 图像处理的软件设计和算法优化的实现 由于在改进Sobel边缘检测算子性能的同时,也相对增加了计算量,尤其是方向模板的增加,每个像素点均由原来的2次卷积运算增加为8次卷积运算,其实时性大大减弱。为了改进上述的不足,在深入研究处理系统和算法后,针对TMS320DM642的硬件结构特点,研究适合在TMS320DM642中高效运行的Sobel改进算法,满足实时处理的要求。整个程序的编写和调试按照C6000软件开发流程进行,流程分为:产生C代码、优化C代码和编写线性汇编程序3个阶段。使用的工具是TI的集成开发环境CCS。在CCS下,可对软件进行编辑、编译、调试、代码性能测试等工作。在使用C6000编译器开发和优化C代码时[7-8],对C代码中低效率和需要反复调用的函数需用线性汇编重新编写,再用汇编优化器优化。整个系统的控制以及数字图像处理是用C程序实现,大部分软件设计采用C程序实现,这无疑提高了程序的可读性和可移植性,而汇编程序主要是实现DM642的各部分初始化。其边缘检测优化算法在DM642中的实现步骤具体如下: S1:根据DM642的硬件结构要求和控制寄存器设置,初始化系统并编写实现边缘检测算法的C程序。 S2:借助CCS开发环境的优化工具如Profiler等产生.OUT文件。 S3:根据产生的附件文件如.MAP文件,分析优化结果及源程序结构,进一步改进源程序和优化方法。 S4:使用CCS中调试、链接、运行等工具,再生成.OUT可执行文件。 S5:运行程序,如果满足要求则停止;否则重复步骤S2~S4直至满足使用要求。4 实验结果 本文以Lena图像为例根据上述的硬件环境和算法实现的原理和方法,图4~图6分别给出了在该系统下采集的视频Lena图像及使用边缘检测算子和改进后处理的结果。由实验结果可以看出,在该系统下能实时完成视频图像的处理,并且给出的边缘检测算子能较好的消除噪声的影响,边缘轮廓清晰。该算法不仅能抑制图像中大部分噪声和虚假边缘,还保证了较高的边缘点位精度。图4 Lena原始图像 图5 传统Sobel算子 图6 改进Sobel算子5 总结 本文实现了在TMS320DM642评估板上用改进的Sobel算子对实时图像进行边缘检测,无延迟地得到边缘图像。边缘检测效果较好,既提高了图像检测的精度又满足了实时性的要求。从检测结果看,利用该改进后的算子在边缘精确定位、边缘提取都达到了很好的效果,且抗噪声能力强,并为目标跟踪、无接触式检测、自动驾驶、视频监控等领域的应用提供了坚实的基础。参考文献[1] 王磊等. 基于Sobel理论的边缘提取改善方法[J].中国图像图形学报,[2] 陈宏席. 基于保持平滑滤波的Sobel算子边缘检测.兰州交通大学学报,2006,25(1):86—90[3] 熊伟. 基于TMS320DM642的多路视频采集处理板卡硬件设计与实现[ M]. 国外电子元器件,2006[4] 朱立.一种具有抗噪声干扰的图像边缘提取算法的研究[J].电子技术应用.2004,25(1)[5] 刘松涛,周晓东.基于TMS320C6201的实时图像处理系统[J].计算机工程,2005(7):17—23[6] TI TMS320DM642 video/imaging fixed-point digital signal processor data manual,2003[7] TMS320C6x Optimizing C Compiler User’s Guide’ TEXAS INSTRUMENTS”,2002[8] TMS320C32x Optimizing C/C++ Compiler User's Guide,Texas Instruments Incorporated,2001

308 评论

玉江style

Canny边缘检测教程 作者:比尔绿色( 2002 ) 主页电子邮件 本教程假定读者: ( 1 )知道如何发展的源代码阅读栅格数据 ( 2 )已经阅读我Sobel边缘检测教程 本教程将教你如何: ( 1 )实施Canny边缘检测算法。 导言 边的特点,因此,边界问题,根本的重要性在图像处理中。在图像的边缘地区,强度强的反差?猛增强度从一个像素的下一个。边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么您要检测的边缘。 的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。精明的意图是要加强许多边缘探测器已经在的时候,他开始了他的工作。他很成功地实现他的目标和他的思想和方法中可以找到他的论文“计算方法的边缘检测” 。在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。第一个也是最明显的错误率低。重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。第三个标准是,只有一个回应单一优势。这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。然后认定的形象,以突出地区梯度高空间衍生物。该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。梯度阵列现在进一步减少滞后。磁滞用来追踪沿其余像素,但没有压制。磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。如果是规模以上的高门槛,这是一个优势。如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 第1步 为了落实Canny边缘检测算法,一系列步骤必须遵循。第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。阿卷积掩模通常远远小于实际的形象。因此,该面具是下跌的形象,操纵一个正方形像素的时间。较大的宽度高斯面具,较低的是探测器的敏感性噪音。定位误差检测边缘也略有增加的高斯宽度增加。高斯遮罩使用我在执行下面显示。 第2步 经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。的Sobel算子进行二维空间梯度测量的形象。然后,大约绝对梯度幅度(边缘强度)各点可以找到。 Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。它们如下所示: 的规模,或EDGE强度,梯度近似然后使用公式: | G | = | GX的| + |戈瑞| 第3步 寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。然而,你会产生错误时sumX等于零。因此,在代码中必须有一个限制规定只要发生。每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。如果青的值为零,边缘方向将等于0度。否则边缘方向将等于90度。公式为寻找边缘方向是: 论旨= invtan (戈瑞/ GX的) 第4步 一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x 1 x x x x x x x x x x x x 然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度(水平方向) , 45度(沿积极对角线) , 90度(垂直方向) ,或135度(沿负对角线) 。所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。认为这是采取了半圆形和分裂成5个地区。 因此,任何先进的方向范围内的黄色范围( 0至5月22日& 至180度)设置为0度。任何先进的方向下滑的绿色范围( 至度)设置为45度。任何先进的方向下滑的蓝色范围( 至度)设置为90度。最后,任何先进的方向范围内的红色范围( 到度)设置为135度。 第5步 在被称为边缘方向, nonmaximum制止目前适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将让细线在输出图像。 第6步 最后,滞后是用来作为一种手段,消除条纹。裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将先进的情况下,逢低低于阈值。同样它也将延长超过阈值决策的优势看起来像一个虚线。为了避免这种情况,滞后使用2的门槛,高和低。任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。

212 评论

爱上大碴粥

毕业论文还是自己写吧,锻炼一下。

174 评论

stella59444

本教程将教你如何: ( 1 )实施图像边缘检测算法。 导言 边的特点,因此,边界问题,根本的重要性在图像处理中。在图像的边缘地区,强度强的反差?猛增强度从一个像素的下一个。边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么您要检测的边缘。 图像边缘检测算法是众所周知的许多人视为最佳边缘检测。精明的意图是要加强许多边缘探测器已经在的时候,他开始了他的工作。他很成功地实现他的目标和他的思想和方法中可以找到他的论文“计算方法的边缘检测” 。在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。第一个也是最明显的错误率低。重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。第三个标准是,只有一个回应单一优势。这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 根据这些标准, 图像边缘检测器的第一个平滑的图像,以消除和噪音。然后认定的形象,以突出地区梯度高空间衍生物。该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( 非最大限度制止) 。梯度阵列现在进一步减少滞后。磁滞用来追踪沿其余像素,但没有压制。磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。如果是规模以上的高门槛,这是一个优势。如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 第1步 为了落实图 像边缘检测算法,一系列步骤必须遵循。第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。阿卷积掩模通常远远小于实际的形象。因此,该面具是下跌的形象,操纵一个正方形像素的时间。较大的宽度高斯面具,较低的是探测器的敏感性噪音。定位误差检测边缘也略有增加的高斯宽度增加。高斯遮罩使用我在执行下面显示。 第2步 经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。的Sobel算子进行二维空间梯度测量的形象。然后,大约绝对梯度幅度(边缘强度)各点可以找到。 Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。它们如下所示: 的规模,或EDGE强度,梯度近似然后使用公式: | G | = | GX的| + |戈瑞| 第3步 寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。然而,你会产生错误时sumX等于零。因此,在代码中必须有一个限制规定只要发生。每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。如果青的值为零,边缘方向将等于0度。否则边缘方向将等于90度。公式为寻找边缘方向是: 论旨= invtan (戈瑞/ GX的) 第4步 一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x 1 x x x x x x x x x x x x 然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度(水平方向) , 45度(沿积极对角线) , 90度(垂直方向) ,或135度(沿负对角线) 。所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。认为这是采取了半圆形和分裂成5个地区。 因此,任何先进的方向范围内的黄色范围( 0至5月22日& 至180度)设置为0度。任何先进的方向下滑的绿色范围( 至度)设置为45度。任何先进的方向下滑的蓝色范围( 至度)设置为90度。最后,任何先进的方向范围内的红色范围( 到度)设置为135度。 第5步 在被称为边缘方向, 非最大限度制止目前适用。 非最大限度抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将让细线在输出图像。 第6步 最后,滞后是用来作为一种手段,消除条纹。裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将先进的情况下,逢低低于阈值。同样它也将延长超过阈值决策的优势看起来像一个虚线。为了避免这种情况,滞后使用2的门槛,高和低。任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。

267 评论

相关问答

  • 压力检测相关论文

    研究大学生应对压力的策略及其特点,帮助大学生摆脱心理压力的困扰,培养大学生健康的心理素质,是使大学生成为社会主义现代化建设的高素质人才的关键。下面是我给大家推荐

    千年小猴妖 2人参与回答 2023-12-08
  • 边缘检测相关论文

    摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处

    Alice兔籽宝宝 4人参与回答 2023-12-09
  • 信号检测相关论文

    [1] 郭建中,林书玉,Chirp-Z变换频谱细化倒谱定征生物软组织散射子平均间距的研究,生物医学工程学杂志,2007; 24 (6) ∶1378~ 1381[

    爱宇冰冰 6人参与回答 2023-12-07
  • 图像边缘检测论文知网

    Canny边缘检测教程 Author: Bill Green (2002) 作者:比尔绿色( 2002 ) HOME EMAIL 主页 电子邮件 This tu

    suibianlaidian 4人参与回答 2023-12-07
  • 边缘检测综述论文

    摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处

    囍兒小静静 4人参与回答 2023-12-08