矩阵时差
数学作为一种文化现象,早已是人们的常识.历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家.进入21世纪之后,数学文化的研究更加深入.一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动.中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度.春秋战国时期,也是知识分子自由表达见解的黄金年代.当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家.因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标.理性探讨在这里退居其次.因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书.古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标.因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明.在中国的数学文化里,不可能给这样的直观命题留下位置. 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展.负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视. 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统.当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来.揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流.通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美.半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机.数学教学有时竟变成一种空洞的解题训练.数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系.教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础." 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样." 这是一位数学大家的数学文化阐述. 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路.应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的.从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠."这是一个力学家的数学文化观.和所有文化现象一样,数学文化直接支配着人们的行动.孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人".学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子".优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物.伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人.多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史.确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径.但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴.以下将阐述一些新视角,力求多侧面地展现数学文化.1. 数学和文学.数学和文学的思考方法往往是相通的.举例来说,中学课程里有"对称",文学中则有"对仗".对称是一种变换,变过去了却有些性质保持不变.轴对称,即是依对称轴对折,图形的形状和大小都保持不变.那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变.王维诗云:"明月松间照,清泉石上流".这里,明月对清泉,都是自然景物,没有变.形容词"明"对"清",名词"月"对"泉",词性不变.其余各词均如此.变化中的不变性质,在文化中,文学中,数学中,都广泛存在着.数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现.文学意境也有和数学观念相通的地方.徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境.2.欧氏几何和中国古代的时空观.初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下."这是时间和三维欧几里得空间的文学描述.在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线.天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千.数学正是把这种人生感受精确化,形式化.诗人的想象可以补充我们的数学理解.3. 数学与语言.语言是文化的载体和外壳.数学的一种文化表现形式,就是把数学溶入语言之中."不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀.再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考."十万有一失"在航天器的零件中也是不允许的.此外,"指数爆炸""直线上升"等等已经进入日常语言.它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的."事业坐标""人生轨迹"也已经是人们耳熟能详的词语.4. 数学的宏观和微观认识.宏观和微观是从物理学借用过来的,后来变成一种常识性的名词.以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别.初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态.高中的对应则是微观的分析.在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行.政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的.是否要从这样的观点考察函数呢 5. 数学和美学."1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观.三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上.欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现.总之,数学文化离不开数学史,但是不能仅限于数学史.当数学文化的魅力真正渗入教材,到达课堂,
风舞飞雁
数学作为一种文化现象,早已是人们的常识.历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家.进入21世纪之后,数学文化的研究更加深入.一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动.中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度.春秋战国时期,也是知识分子自由表达见解的黄金年代.当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家.因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标.理性探讨在这里退居其次.因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书.古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标.因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明.在中国的数学文化里,不可能给这样的直观命题留下位置. 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展.负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视. 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统.当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来.揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流.通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美.半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机.数学教学有时竟变成一种空洞的解题训练.数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系.教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础." 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样." 这是一位数学大家的数学文化阐述. 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路.应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的.从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠."这是一个力学家的数学文化观.和所有文化现象一样,数学文化直接支配着人们的行动.孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人".学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子".优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物.伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人.多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史.确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径.但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴.以下将阐述一些新视角,力求多侧面地展现数学文化.1. 数学和文学.数学和文学的思考方法往往是相通的.举例来说,中学课程里有"对称",文学中则有"对仗".对称是一种变换,变过去了却有些性质保持不变.轴对称,即是依对称轴对折,图形的形状和大小都保持不变.那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变.王维诗云:"明月松间照,清泉石上流".这里,明月对清泉,都是自然景物,没有变.形容词"明"对"清",名词"月"对"泉",词性不变.其余各词均如此.变化中的不变性质,在文化中,文学中,数学中,都广泛存在着.数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现.文学意境也有和数学观念相通的地方.徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境.2.欧氏几何和中国古代的时空观.初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下."这是时间和三维欧几里得空间的文学描述.在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线.天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千.数学正是把这种人生感受精确化,形式化.诗人的想象可以补充我们的数学理解.3. 数学与语言.语言是文化的载体和外壳.数学的一种文化表现形式,就是把数学溶入语言之中."不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀.再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考."十万有一失"在航天器的零件中也是不允许的.此外,"指数爆炸""直线上升"等等已经进入日常语言.它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的."事业坐标""人生轨迹"也已经是人们耳熟能详的词语.4. 数学的宏观和微观认识.宏观和微观是从物理学借用过来的,后来变成一种常识性的名词.以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别.初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态.高中的对应则是微观的分析.在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行.政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的.是否要从这样的观点考察函数呢 5. 数学和美学."1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观.三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上.欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现.
yuyanyanbobo
数学是人类的一种文化,我们的数学学习,在内容上应当是现实的、有意义的、富有挑战性的。数学不仅帮助我们更好地探求客观世界的规律,同是也为我们交流信息提供了一种有效、简捷的手段。作为课程的数学并非指教材中那点结论性的知识点,例题、习题绝对不是数学学科的全部。“数学应该是阳光!”“数学应该是娱乐!”“数学很美,数学很有趣,数学很有竞争性,数学是人聪明的源泉。”我们在获取知识的同时,应当体会数学中的美,得到美的教育,熏陶和激励。
让我们一起来感受数学的简洁美。数学中的简洁美是无处不在的。数字和符号的使用可以替代语言文字,同时又浓缩了语言文字的全部含义。阿拉伯数字看似枯燥,但它是从无数具体的数量中抽象得出的。生活中的一个苹果、一枝铅笔、一只鸟、一群人、一堆西瓜……都可以有简单的1来表示。1是何等的抽象与概括!
让我们一起来体验数学的对称美。生活中许多美的事物都具有对称性,花丛中翩翩飞舞的蝴蝶,翱翔天际的白鸽,横跨天空的彩虹,片片翻飞的落叶……对称在数学中也随处可见,如11×11=121,111×111=12321……这样的算式体现着对称的美。在几何图形中,长方形、正方形、等腰三角形、等腰梯形、圆等等都是对称的。
让我们一起来欣赏数学的和谐美。数学中无不体现着统一和和谐的美。这种美既是精细的,又是深邃的。以数学中的图形为例,竖起线意味着刚直、挺拔,横直线意味着平稳、开阔,曲线给人以优美、柔和的感觉。“比例”的知识,可让我们了解“黄金分割法”以及美学用途。如维纳斯的雕像,埃菲尔换塔的底座与高的比,舞台上报幕员的最佳位置,名画《最后的晚餐》中重点人物都处在“黄金分割点”的位置上……
罗素说:“数学,如果正确地看,不但拥有真理,而且也具有至高的美。”数学中处处充满着对称、和谐、简洁的美,这些美只有在探索和创造的过程中才能慢慢地体会和领悟。让我们一起感受数学的简洁美,体验数学的对称美,欣赏数学的和谐美,共同走进数学的世界,体会数学中的美吧!
Miss乔大小姐
数学作为所有科学的基础,其作用众所周知。进入现代文明的我们早就习惯于生活在数字的海洋中,用 1、2、3、4进行着基本的沟通交流。但与其巨大社会作用相反的是很少有人真正地喜爱数学,真正地醉心于数学研究,挖掘深藏的数学之美。 人们常说“不要以貌取人”。作为一门用数字和图形说话的学科,数学就像是科学童话里的灰姑娘,其枯燥、乏味的表象下面,隐藏着最动人、美丽之处。首先我认为数学之美,美在神秘。简简单单一个符号就可以勾勒出无穷无尽的自然真理。牛顿运动三大定律,只用几个简单的数学公式,就能够囊括浩瀚宇宙的运动规律。对于每一个乐于探求真相的人来说,数学可以说是他们最好的旅游胜地。一群群数字、一个个图形在这里交织出了一幅幅最动人的风景。这片风景连绵不断却又迥然不同,当你徜徉在数学的海洋中,你绝不会有“高处不胜寒”的感慨,也不会有“一马平川任我行”的放纵,有的只是寻幽探胜的意趣和对自然真理的崇敬之情。就连中国最著名的数学家陈景润在摘下数学王冠上的宝石后,依然要怀着朝圣的心情在数学研究的道路上谨慎前行。 其次,我认为数学之美,美在应用。“金玉其外,败絮其中”常被我们用来贬斥那些虚有其表的人和事,可见我们评价美的标准,不光是因为其具备美好的内外部特征,更要注重其是否具有实用价值。“数学是众科学之母”一句话就说尽了数学在社会生活各领域的价值体现。购物时用数学,电脑软件的开发、一座城市的交通路线设计、整个地球的网络建设,都离不开数学。甚至于艺术领域,也有数学的身影;数字按不同的音高排列,是悠扬的乐谱;雕塑和绘画中,哪一个少得了数学黄金分割的定律?故宫没有一根钉子的角楼,重檐斗拱的紫禁城,哪一个离得开严谨的数学知识?可以毫不夸张的说,正是数学用数字和图形搭建了人类社会不断前进的阶梯。数学之美犹如优美和谐的乐曲,别具一格的绘画,雄伟壮美的建筑,同样会使数学学习者们激情荡漾。有着这样的奉献和功绩,我们能说数学不美吗? 最后我认为数学之美,美在于一次一次挑战后的成功。而这种美感的获得,常常以长时间的苦苦思考及单调乏味的运算为代价,而且必须一次次地接受失败与错误, 必须接受枯燥学习所带来的孤独。屡战屡败,屡败屡战,最后你可能在冲凉时,或者刷牙时,突然间豁然开朗,仿佛音乐突然响起,问题好像一下子就解决了。那时候的我,往往有一种人在高山飘飘然的感觉。这种美是无与伦比的。这就是我眼中的数学质朴而充满魅力。作为科学界里一块奇异的宝石它必将在新时代里散发出灿烂的光芒,用它特有的美引导我们不断前行!
excellentpri
“Enjoy every day” 享受每一天,这句《泰坦尼克》中的Jack的经典台词真可谓一语道破生活的真谛——把生活看作是一个享受的过程,真正发现生活的可爱之处。孔子曰:“学有三境——知学者不如好学者,好学者不如乐学者。” 而这个乐又何尝不是学生学习的最大动力呢? 许多人认为数学是一门抽象的科学,不在于付出多少努力,而在于你的智力的高低。我却不以为然,数学,是一切自然中不可缺少的部分,它不需要华丽的词藻来修饰,也不需要人们过多的夸奖,它是一中既朴实又高超的智慧。要想学好数学,第一步离不开勤奋,勇于实践的精神,有人把数学比作万宝山。然而它的大门却不像游览胜地那样,可以让人门自由进出,对一些学习上的懦夫懒汉来说,面对金光四射的数学大门,却犹如隔窗观花,可望不可及。至于那些畏惧崎岖山路的人,他一生只是在万宝山徘徊空叹。只有那些敢于奋进的勇士,才有可能打开数学之门,满载而归。 数学,作为一门逻辑性极强的学科,其性质决定了她是神秘的、深奥的,她比起其他的学科来似乎更枯燥一些、无味一些。但她又的的确确的是美丽的、耐人寻味的,她是思想与思想的大胆碰撞,是智慧与智慧的平等交流,更是情感与情感的浸润融合。 无尽的数学知识正像辽阔的海洋,那大海深处蕴含着一个五彩缤纷的世界。让我们一起带着孩子们畅游其中,为这无垠海洋中数不尽的奇珍的美而陶醉,甚而我们或者我们的学生会有幸步入龙宫,见到更加奇伟怪丽、五彩斑斓的景象,一窥数学的美境。哥德巴赫猜想激励着人们不断去探索或研究,它的证明将会给人带来无尽的惊奇、无穷的乐趣;数学史上的许多高峰也正等待后人们去攀登。山越高,路才越奇,越奇才越有惊美的发现。 平淡中见新奇、新奇中才有艺术。明明在“意料之外”但又在“情理之中”。未曾料到才能引人人胜,峰回路转,柳暗花明,这也正是数学的魅力、数学的美。 我不是擅长格律的诗人,但我愿意谱写享受数学的绝妙诗歌。我不是擅长丹青的画师,但我愿意为享受数学涂抹一笔亮色。我不是擅长音律的舞者,但我愿意为享受数学狂舞亦歌。我不是热衷探险的勇者,但我愿意在享受数学的漫漫道路上不断探索……数学知识像海洋那样辽阔,像大山那样宏伟。一个人无论天资多么高,精力多么充沛,毅力多么顽强,学习条件多么优越,也不可能把所有数学知识学到手。有的同学总想学到一切,他们希望一串串熟了的葡萄旁边又开放着朵朵鲜花,可是,事实告诉我们:这是不可能的呀!我们必须从第一步起,一步一个脚印,脚塌实地的走下去,才有可能度过那个辽阔的大海、攀上那座宏伟的大山。数学知识的学习,单靠认真听讲、死记硬背是不行的。相传有一个人巧遇一位仙翁,仙翁点石成金送给他,但他不要金子,而要仙翁点石成金的指头。这个人为什么要指头呢?因为他懂得,不管送自己多少金子,金子总是有限的,但如果有了点石成金的指头,那就可以随心所欲了。我常常给学生讲这个故事,但我却启发学生:仙翁的指头固然好,但那毕竟是别人的。如果我们拿来使用是否灵呢?可见,我们更应该学到仙翁的点金之术。古人说:“受之以鱼,只供一饭之需,教人已渔,则终身受用无穷”,也就是这个道理。
关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即
摘要:孔子曾经说过:“知之者不如好知者,好知者不如乐知者。”数学教师要不断提高教学艺术,从教材内容和学生实际出发,把数学和现实生活紧密结合,把书本上的数学问题变
无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供
美术影响人的一生我不知道你是如何想我的题目,但是我觉得我是对的。我老爸经常说:“我让你学美术并不是让你成为画家或艺术家,而是培养你的耐心。”我的耐心往往是少得可
巧赢硬币 记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我