• 回答数

    4

  • 浏览数

    183

Q吃吃吃买买买
首页 > 学术论文 > 相对论论文题目

4个回答 默认排序
  • 默认排序
  • 按时间排序

旺泰纺织

已采纳

假设你在一艘豪华游轮上旅行,这艘游轮在海上开的速度很快,但是它非常平稳,没有任何颠簸。游轮上有个全封闭的大厅,里面有游泳池有球场,你甚至还可以在里面做物理实验。 那请问,在不和外界发生任何联系的情况下,你能判断出这艘游轮是在前进还是静止不动吗? 无法判断,所以, 匀速直线运动和静止没有本质区别,速度都是相对的。 这个其实就是相对论,这就叫“伽利略的相对论”。广义相对论的时候你还会知道,其实不一定是匀速直线运动,加速运动跟静止也没有本质区别…… 力只能带来*加*速度,单纯的速度跟力无关。匀速直线运动和静止都没有力,所以物理定律在游轮和地面是一样的。 假设站在游轮上的你不是向游轮前方射出一支箭,而是用手电筒打出一束光,你猜这束光的速度应该怎样。相对于你来说,光速是每秒30万公里。 那既然你跟站在地面上的我的相对速度是每小时360公里 —— 也就是每秒公里,根据刚才伽利略的算法,我眼中这束光的速度就应该是每秒30万.1公里,对吧? 物理学家发现,不是这样的。不管你跟我的相对速度有多快,我测量和你测量这束光的速度”都是每秒30万公里“! 1860年代初期,麦克斯韦提出一组总共四个方程,来描写*所有的*电磁现象。这就是著名的麦克斯韦方程组,它们写出来非常漂亮 —— 前三个方程分别说的是(1)电荷产生电场;(2)没有磁荷;(3)变化的磁场也能产生电场。第(4)个方程右边的第一项说的是电流产生磁场,所有这些都是当时已知的物理知识。 我们重点说说它的第二项。这一项就是麦克斯韦的独特发现。一方面,是麦克斯韦考虑电和磁之间应该有一个对偶的关系。那既然法拉第的实验证明变化的磁场能产生电场,变化的电场是不是也能产生磁场呢?另一方面,这一项也是让方程组在数学上自洽、让电荷数守恒的要求。这一项,就是说变化的电场也能产生磁场。 后来人们用实验证明麦克斯韦是对的。但是请注意,麦克斯韦这个发现纯粹是理论推导出来的!这就好比说一个侦探,听取了各方的信息之后突然就推断出来一个人们意想不到的结论。而麦克斯韦用的仅仅是数学。 好,现在麦克斯韦知道 —— * 变化的磁场能产生电场 * 变化的电场又能产生磁场 那首先你就能看出来,电和磁其实在某种程度上是“一回事儿”,电场和磁场可以互相产生,就算没有电荷,用磁场也能产生电场。 但麦克斯韦紧接着想到,如果我用线圈弄一个震荡的电流,产生一个周期变化的磁场,那么这个周期变化磁场就能产生一个周期变化的电场,而这个周期变化的电场又能产生新的周期变化的磁场……以此类推,岂不是说这个电磁场可以一直传播下去吗? 这就是电磁波!二十多年以后人们真的在实验中制造了电磁波,给后世生活带来巨大的影响,不过麦克斯韦在意的不是电磁波的实用价值。麦克斯韦可以用他的方程组直接计算这个电磁波的传播速度。他算出来电磁波速度,发现跟光速,它们的数值是一样的! 而现在麦克斯韦计算得出的电磁波的速度正好是光速,于是麦克斯韦大胆宣称,光,其实就是电磁波。后来人们证实果然是这样,我们平时所见的可见光无非就是特定频率的电磁波而已。 这是物理学家再一次看破了红尘。天上的东西和地上是一回事儿,匀速直线运动和静止是一回事,电和磁是一回事儿,而现在麦克斯韦说,光跟电磁场,其实也是一回事儿。 这么一来,物理学的逻辑结构就变得更简单了。牛顿力学加上麦克斯韦电磁学,身边的一切物理现象等于是都被理解了。这绝对是英雄的壮举。 但是这个成就里边有一个危机。 那麦克斯韦方程组解出来的光速是相对于谁呢?这个问题可以有两种答案。 老百姓的直觉是,光速肯定是相对于光源的。你打开手电筒射出去一束光,那这个光速肯定是相对于手电筒啊 —— 但是这个说法很快就被物理学家给否定了。 宇宙中有一种“双星系统”,就是两个临近的恒星互相绕着对方旋转,谁也离不开谁。从我们这里观察,就总有一颗恒星在向着我们运动,另外一个恒星向着我们相反的方向运动 ——可是天文学家观测了各种双星系统,从来都没有看到任何延迟。两个恒星的光速始终都是一样的! 这说明光速跟光源的速度无关。物理学家对此并不感到惊讶,因为电磁波本来就是脱离最早产生它的电荷和电流而独立存在。波,毕竟不是射出去的箭。 物理学家设想,光其实是遍布宇宙空间的某种介质的波动,而光速就是相对于这个介质的速度……可是当时的人万万没想到,这个解释的问题更大。 好,水波是相对于水面的运动,声波是相对于空气的运动 —— 那既然光作为电磁波也是一种波动,它就也应该是相对于某种介质的运动,对吧? 这个假想中的介质,就被称为“以太”。 那以太到底是一种什么东西呢?物理学家可以推算它的性质。 首先,既然我们能看到来自宇宙各处的星光,以太就必须遍布整个宇宙空间,无处不在。 其次,以太肯定是一种非常稀疏的物质。这是因为我们完全感觉不到它的存在,各种东西都是该怎么运动就怎么运动,以太不构成障碍。 但同时以太又必须得是一种很坚硬的东西。这是因为物理学家早就知道,波的传播速度跟介质的坚硬程度有关:介质越硬,波速就越快,比如声波在水里的速度就比在空气里快。 又很稀疏,又很坚硬,以太这个东西不是太奇怪了吗? 更严重的问题是,如果以太真的存在,那物理学家关于“匀速直线运动和静止没有区别”这个信念,可就错了。我们完全可以说“相对于以太的静止”就是绝对的静止,它跟运动有本质的区别。 咱们还是回到那艘豪华游轮上。你做力学实验的确无法判断船是在运动还是静止,但是现在你可以做一个电磁学实验!你打开手电筒制造一段光线,然后你测量一下它的速度。只要船在相对于以太运动,你就一定能找到一个方向,正好是船运动的方向,在这个方向上,光速比其他方向要慢一些!那只要你能找到一个光速变慢的方向,不就证明船是在运动了吗? 我们的地球就是这艘船。既然地球在公转,它就肯定是在运动。那如果以太存在,我们就一定能找到一个让光速或者稍微变大、或者稍微变小的方向,对吧? 美国物理学家阿尔伯特·迈克尔逊(Albert Michelson)发明了一个特别漂亮的测量光速变化的方法。他把一束光分成两束,在垂直的两个方向前进,走过同样的距离,经过镜子反射之后再回来。如果光速在两个方向上是一样的,两束光就会形成一个完美的干涉条纹。但是只要这两束光的速度有一点点不一样,这个干涉条纹也会被破坏。这个装置足以发现极其微小的速度差异,现代人发现引力波的实验装置也是用了这个原理。 这就是发生在1887年的“迈克尔逊-莫雷实验”。实验结果是地球上的光速在所有方向上都是一样的。 这也就是说根本就没有以太。 这也就是说光根本不需要介质,就能在空间传播。 这也就是说匀速直线运动和静止还真是没有本质区别。 但这也就是说,物理学家还是不知道光速到底是相对于谁的。 1887年,全体物理学家都陷入了困惑。他们还得再等18年才能知道答案。而提供答案的人,现在才只有8岁。 1900年。排前三名的学生都得到了正式的教职,从此就是职业科学家。而爱因斯坦和米列娃却不得不为生计奔忙。两人又有了孩子,爱因斯坦为了养家糊口还去给人当了一阵家庭教师,后来好不容易在专利局找到了一个低级的工作。这就是爱因斯坦在1905年之前的生活状况。 爱因斯坦16岁就写了第一篇物理论文,这篇论文的题目就是……《磁场里以太的状态的研究》。他就问了一个问题,说如果我以光速在运动,那我看到的光,会是什么样的呢?难道光会是静止不动的吗? 当时爱因斯坦就说,他认为不会是那样 —— 他说根据麦克斯韦的理论,不管我是什么速度,我做实验弄出光波来,光波还是会以光速在运动。 现在我们一般把1905年称为“爱因斯坦奇迹年”。我记得2005年的时候,物理学家们还专门组织活动纪念爱因斯坦奇迹年的一百周年 —— 别的名人都是纪念诞辰或者逝世多少周年,而爱因斯坦应该按照奇迹年纪念。 伯尔尼瑞士专利局的助理鉴定员阿尔伯特·爱因斯坦,利用业余时间开展科学研究,于1905年发表了六篇物理学论文。其中四篇,用物理学家杨振宁的话说,引发了人类关于物理世界的基本概念 —— 时间、空间、能量、光和物质 —— 的三大革命。 1905年6月9日,爱因斯坦发表《关于光的产生和转变的一个启发性观点》。当时物理学家认为光是一种连续的波动,而爱因斯坦在这篇论文里针对“光电效应”这个现象,提出一个解释,说光的能量不是连续变化的,而是一份儿一份儿的 —— 是“量子”化的。这篇论文开启了量子力学。 7月18日,爱因斯坦发表《热的分子运动论所要求的静止液体中悬浮粒子的运动》,解释了布朗运动。人们一直都在猜测世间的物质都是由分子和原子组成的,但是因为分子原子的尺度太小,显微镜根本看不到,一直没有直接的证据。而在将近80年前,英国植物学家罗伯特·布朗用显微镜观察到水面上的花粉颗粒一直在做永不停息的不规则的运动。爱因斯坦这篇论文说,花粉之所以会动,那是水分子的热运动在不停地推它的结果 —— 而且他能据此准确计算水分子的性质。这篇论文是人类第一次实锤证明了分子和原子的存在。 9月26日,爱因斯坦发表《论运动物体的电动力学》,这篇论文就是狭义相对论。 11月21日,爱因斯坦发表《物体的惯性同它所含的能量有关吗?》,这篇论文用狭义相对论推导出现在尽人皆知的公式 —— E = mc^2,并据此说明质量和能量其实是一回事儿。 这些论文实在太革命,它们刚出来的时候都让物理学家有点儿懵。但是短短几年之后,就获得了实验上的证实,并且被普遍接受。到1921年,讲光电效应的那篇论文还得了一个小奖,叫“诺贝尔奖”。 我有时候就想,如果把一个现代物理学家穿越到1905年去,他敢不敢用这个速度发表那些论文,敢不敢一个人独占这么多革命的荣誉 —— 我觉得小说都不敢这么写。 没错,爱因斯坦是专门来改变世界的。 麦克斯韦电动力学解出来的光速,到底是相对于谁的。实验证明光速与光源的速度无关,而以太不存在,地球上哪个方向的光速都一样。那这件事儿你到底怎么面对。 爱因斯坦提出相对论的论文题目叫做《论运动物体的电动力学》,直接说的就是光速危机。爱因斯坦的解决方案是一个拨云见日的断言 —— 一切匀速直线运动或者静止的坐标系下,物理定律都是一样的,句号。 这句话叫做“相对性原理”。它是伽利略相对论的推广。伽利略说*力学*在一切匀速直线运动和静止的坐标系中是一样的,而爱因斯坦现在说不用非得是力学,一切物理定律 —— 包括电动力学 —— 都是一样的。 这也就意味着,不管你是站在地面静止不动,还是在飞奔的高铁上,还是在以接近光速飞行的宇宙飞船上,当你看到一束光的时候,这束光的速度永远都是 c。 那怎么会是这样呢?难道不同坐标系下的速度不应该叠加吗?难道我迎着光走的时候光速相对于我不应该更快一点吗? 爱因斯坦说,不是。不是光有问题,是你的时空观有问题。 3.时间的膨胀 只要你坚信相对性原理和光速不变,狭义相对论的各个结论就都可以用数学推导出来。 咱们现在来做一个思想实验,看看真实时空的一个小秘密。 下面这张图中是个长条形的盒子。盒子的一端(A)有一个发射装置,它可以在垂直方向发射一个光脉冲,另外一端(B)是一面镜子。我们要研究的就是光从盒子的一端出来,到达镜子,然后再反射回来,这么一个过程。 为此,我们首先要定义两个“事件”。在相对论里时间和空间都是相对的,但是事件是绝对的,发生了就是发生了,没发生就是没发生。 我们把光离开盒子的发射端这件事儿称为“事件1”,把光经过镜子反射之后又回到这个地方,称为“事件2”。我们假设盒子两个端点之间的距离是 L。 好。现在请问,事件1跟事件2这两件事之间,间隔了多长时间呢? 如果你跟盒子是在同一个坐标系内 —— 也就是说,盒子相对于你是静止的 —— 那么答案非常简单,小学生都会算:光走的路线是两倍的 L,而光速是 c,所以时间是 Δt = 2 L/c. 但是,如果你跟盒子不在同一个坐标系内,答案就不是这样了。我们假设你站在地面不动,而盒子相对于你,以速度 v 在水平的方向上有一个运动,如下图 ——斜边总是比直角边长,D > L,所以 Δt' > Δt。也就是说,地上的旁观者看到两事件的间隔要长,跟随盒子运动的人经历两事件可能只要10年的时间时,地上的旁观者经历两事件的时间却可能需要30年。所以,相同的两事件间,运动的物体经历的时间要地球上短,少,也就是说,相比地球上的时间变慢了。而地球上的时间相比运动的飞船上的时间变快了(以运动的飞船上的时间为标准时间,无论是飞船上还是地面上,时间的间隔变化快慢却是一样的)。 1941年,物理学家拿μ子验证了相对论。华盛顿山的高度大约是2公里。这些 的μ子从山顶到达山底大约需要走微秒。如果这些高速μ子的半衰期跟静止μ子一样,那么这微秒可是好几个半衰期,山底收集到的μ子数应该是山顶的 分之一。实验结果,山底收集到的μ子数是山顶的 分之一。这些μ子真的通过高速运动保持了青春 —— 这正是相对论预言的结果,数值丝毫不差。 1979年物理学家又做了一次实验,他们用欧洲核子中心的粒子加速器把μ子加速到了,结果这些μ子的平均寿命就被延长了倍! 相对论不但正确,而且非常精确。 如果永远不联系,你在飞船的生活跟我在地面的生活就没有任何区别。可是一旦要联系,咱俩的数字就非常不一样。而所有这些不一样,又恰恰是因为光速在所有坐标系下都一样。 相对论是如此地让人不好接受,却又是如此的简单。 跟时间膨胀相对应的一个效应是“长度收缩”。 飞船开始出发和飞船到达目的地的两事件中,由于在我们看来还是在他看来,飞船相对于这段距离的飞行速度可是一样的,所以,当乘以不同的时间间隔,就造成了运动的飞船所经历的路程变短(相比地面的看到的路程)。我们还是说宇航员。同样是一段距离,我们在地面看他应该飞25年才能到,在他自己看来,飞15年就到了。而且请注意,不管 那么这就意味着,宇航员看到的这个距离,比我们看到的要短。 所以,长度是个相对的概念。一个物体的长度在相对于它静止的坐标系中是最大的,如果你跟它有一个相对的运动,你会觉得它比静止的时候短一些。这就是长度收缩。

296 评论

美美吻臭臭

一千元还有人帮你写。忽悠谁。

266 评论

长春小熊猫

论文背景不给无法给出准确的材料,以下是相对论的基本概念,精选一些,希望对你有用。【基本概念】相对论(Principle of relativity relativism[5relEtivizEm] relativity[7relE5tiviti] theory of relativity)相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实。【提出过程】除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。如果设K坐标系中一个事件可以用三个空间坐标x、 y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由 x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖。[编辑本段]【狭义理论】·狭义相对论的概念马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。·狭义论原理物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是倍光速,人的速度也是倍光速,那么地面观测者的结论不是倍光速,而是倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。·狭义论效应根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。[编辑本段]【佯谬问题】·时钟双生子佯谬相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在那个参考系中,B都比A年轻。为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A先是比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。[编辑本段]【广义理论】·广义相对论的概念相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。·广义论公式根据广义相对论中“宇宙中一切物质的运动都可以用曲率来描述,引力场实际上就是一个弯曲的时空 ”的思想,爱因斯坦给出了著名的引力场方程(Einstein's field equation): R_ - \fracg_ R = - 8 \pi {G \over c^2} T_ 其中 G 为牛顿万有引力常数,这被称为爱因斯坦引力场方程,也叫爱因斯坦场方程。该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。 加入宇宙学常数后的场方程为: R_ - \fracg_ R + \Lambda g_= - 8 \pi {G \over c^2} T_ ·广义论原理由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速。

324 评论

妮妮乖乖58

理论物理方面的期刊中国物理快报理论物理通讯物理学报等等。还有一些有理论物理传统的大学的学报,比如北京大学、清华大学、北京师范大学、中国科技大学等等

186 评论

相关问答

  • 对人好对社会好论文题目

    1.形势与政策人类命运共同体 2.新时代下的人类命运共同体 3.中国与人类命运共同体……这都是很好的论文题目

    面包超人311 5人参与回答 2023-12-06
  • 酒相关论文题目

    酒 文化 是指在酒的生产和消费过程中所产生的物质和精神文化成果。在中华民族五千年历史长河中,酒文化作为一种特殊的文化形式,在传统的中国文化中有其独特的地位。

    柠檬草星冰le 4人参与回答 2023-12-06
  • 相对运动论文文献

    理论物理方面的期刊中国物理快报理论物理通讯物理学报等等。还有一些有理论物理传统的大学的学报,比如北京大学、清华大学、北京师范大学、中国科技大学等等

    veinna2002 7人参与回答 2023-12-06
  • 导师对论文题目

    可行性是指可以实际进行的行为或事物。针对性是指具有具体方面可行的行为或事物

    xiaoxiao765 8人参与回答 2023-12-07
  • 化学相关题目论文题目

    石油化工生产技术专业论文题目:1. 中国的石油中化工产业现状与竞争力分析2. 中国的石化产业可持续发展研究3. 工业废水处理技术4. 我国合成氨工业现状及节能技

    天凄微凉 4人参与回答 2023-12-11