玲珑金月
分段函数,就是对于自变量x的不同的取值范围,有着不同的解析式的函数。 它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。由于分段函数概念过广课本无法用文字明确给出分段函数的定义,故以更的实际例题的形式出现。但不少理解能力较弱的学生仍对它认识肤浅模糊,以致学生解题常常出错。本段介绍分段函数的若干种题型及其解法,以供大家参考。作图题例1作出函数的图像。分析:(根据北师大版32页例题2)函数去绝对值符号后就变为分段函数f(x)=|x+1|+|x-1| =这个分段函数有三段,所以这个函数的图像应由三条线组成,其中两边各是一条射线,中间是一条线段。分段函数作图题的一般解法:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。求函数值例2已知函数f(x)= 求f(3)的值。解:由3∈(-∞,6),知f(3)=f(3+2)=f(5),又5∈(-∞,6),所以f(5)=f(5+2)=f(7).又由7∈[6,+∞)所以f(7)=7-2=5,因此,f(3)=5。求分段函数的函数值的方法:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止。求函数值域例3求函数f(x)= 的值域。解:当-2≤x≤a时,x2 的取值有三种情形:(1)当-2≤a<0时,有a2≤x2≤4 ;(2)当0≤a≤2时,有0≤x2≤4 ;(3)当a>2时,有0≤x2≤a2当x>a时,-|x|的取值有两种情形:(1)当-2≤a<0时,有-|x|≤0,(2)当a≥0时,有-|x|<-a 。所以原函数的值域为:(1)当-2≤a<0时,为(-∞,0]∪[a2,4] ;(2)当0≤a≤2时,为(-∞,-a)∪[0,4];(3)当a>2时,为(-∞,-a)∪[0,a2]求分段函数的值域的方法:分别求出各段函数在其定义区间的值域,再取它们的并集即可。函数的奇偶性例4 判断下列函数的奇偶性(1)f(x)= (2)f(x)=解:(1)∵当x>0时,-x<0, f(x)=ex ,f(-x)=-e-(-x) =-ex ,即有f(x)=-f(-x),同理,当x<0时,也有f(x)=-f(-x)∴函数f(x)是奇函数。(2)∵当x=0时,f(0)=f(-0)=0 ,当x>0时,-x<0,f(x)=x(1-x) ,f(-x)=-(-x)[1+(-x)]=x(1-x) ,即有f(x)=f(-x),同理,当x<0时,也有f(x)=f(-x).∴函数f(x)是偶函数。判断分段函数的奇偶性的方法:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x>0,-x<0 ,分别代入各段函数式计算f(x)与f(-x)的值,若有f(x)=-f(-x),当x=0有定义时f(0)=0,则f(x)是奇函数;若有f(x)=f(-x),则f(x)是偶函数。函数的单调性例5 讨论函数f(x)= 的单调性。解:当x≥0时,f(x)=-x2+4x-10 ,它是开口向下,对称轴为x=2的抛物线的一部分,因此f(x)在区间[0,2]上是增加的,在区间(2,+∞)上是减少的;当x<0时,f(x)=-x2-4x-10 ,它是开口向下,对称轴为x=-2的抛物线的一部分,因此f(x)在区间[-2,0)上是减少的,在区间(-∞,-2)上是增加的。分段函数的单调性的判断方法:分别判断出各段函数在其定义区间的单调性即可。求函数的最小正周期求分段函数的最小正周期的方法有:定义法、公式法和作图法。例6 求函数f(x)= 的最小正周期。定义法:当x=2kπ或2kπ+π时,sin(2kπ+π)=sin2kπ=0当2kπ-π
枫月絮影
数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-()=. 然后便要进行讨论: 当 d>0 时,>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥
水墲月心时
浅析怎样让小学数学教学走向生活化新《课程标准》中指出:“数学是对现实世界的一种思考、描述、刻画、解释、理解,数学是人们生活、劳动和学习必不可少的工具,它来源于生活,又服务于生活……”为此,我经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,使学生能较好地感知和理解所学的内容。 一、例题生活化,体验、感受数学 一提到数学这个词,大家都觉得只是“题”、是“数字”,学生学数学只要做题就行了。而在使用新教材的过程中,我逐步体会到了,数学本身不只是“数字符号”,它有更丰富的内涵,与生活实际密切相关。数学教学中,要从多方面“找”数学素材,多让学生到生活中“找”数学、“想”数学,真切感受“生活中处处有数学”。如,在讲解直角三角形的时候,有这么一道题:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米。如果梯子的顶端下滑1米,那么底端滑动的距离是1米吗?很多同学的第一反应是下滑了1米,我让学生互相交流,并且动手建立模型、操作,发现答案并不是1米。通过小组合作学习,进行小组内的交流,让每个学生发表自己的观点、倾听同伴的解法,相互学习,让学生感觉到数学就在自己身边,数学就在自己的生活中,从而学会了解决数学问题。 二、导入生活化,创设情境,激发兴趣 “兴趣是最好的老师。”在我们的生活中,到处都充满着数学,教师在教学中要善于从学生的生活中抽象出数学问题。在平时的教学活动中,我十分重视学生的已有生活经验,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,充分利用教材中的情境,把握好新旧知识间的距离,激发学生的求知欲望。如在讲解图形的轴对称问题时,我先拿出自己剪好的“囍”字,问学生:会剪“囍”字吗?如何剪?剪出的“囍”字有什么特点?让学生自己动手操作,发现轴对称的美,发现这些图形的变换原来就在我们的身边,无形中产生了学习的动力。期刊文章分类查询,尽在期刊图书馆 三、教学生活化,产生亲切感 在现实生活中,学生天天与数学打交道,却对生活中的数学熟视无睹,对数学缺乏兴趣,缺乏良好的数感,学与做无法同步发展,解决实际问题的能力得不到锻炼和提高。学和用的分离,把数学学习和生活需要割裂开来。在新课程背景下,我们很有必要让数学回归生活,从而让学生对数学产生亲切感。如在讲一次函数问题时,我先出了这么一道题:学校为了鼓励节约用水,对自来水费按以下方式收取:用水不超过10吨,每吨按元收费;若超过10吨,超出部分每吨按元收费。①王老师六月份用了8吨水,应交水费多少元?②李老师六月份用了12吨水,应交水费多少元?③陈老师六月份平均水费为每吨元,则陈老师六月份用了多少吨水?应交水费多少元?当学生解决了这个问题后,我再让学生拿来当月的水费单子,让学生思考水费的计算公式,当用水量超过多少时,水费的单价会提高,从而让学生得出水费的一般计算形式。这个生活实际问题的提出,既让学生了解了分段函数,也让学生对生活中的数学产生了兴趣,同时对学生进行了节约用水的教育。 四、练习生活化,提高操作实践能力 学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题,是必要的日常生活的工具”。引导学生把所学知识联系、运用于生活实际,可以促进学生探索意识和创新意识的形成,培养学生初步的实践能力。例如这样一道题目:用一张正方形的纸制作一个无盖的长方体,怎样制作使得体积较大?这是一个综合性的问题,学生可以从以下几个方面进行思考:①无盖长方体展开后是什么样?②用一张正方形的纸怎样才能制作一个无盖长方体?③制作的无盖长方体的体积应当怎样去表达?通过这样题目的实践练习,学术进一步丰富了自己的空间观念,体会了函数思想以及符号表示在实际问题中的应用,进而体验了从实际问题中抽象出数学问题、建立数学模型,加深了对相关知识的理解,发展了自己的思维能力。 课堂教学要生活化,但也要考虑学生实际。例如,以按揭购房、房屋装修、超市购物等充满城市文化气息的素材来创设“生活化”情境,会让城市学生感觉亲切和熟悉,但是对于农村学生来说似乎是“天外来客”。“现行课程中的城市文化气息太浓,乡村文化缺乏体现。新教材中反映农村生活经历和实际问题的材料太少,而与农村生活有较大距离的背景内容又太多。”所以教学中除了注意“生活化”情境的创设外,还必须加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,收集生活素材,积累经验,更好地认识数学和生活的依存关系。 数学课堂通常被认为比
随着经济的快速增长,风电技术也在不断的改善,给人们的生活带来了许多方便.下面我整理了风电技术论文3000字,欢迎阅读! 促进风电发展的技术解决方案 【摘要】随着
弄清楚公司对一个岗位的要求和待遇,对照来人能力各方面是否满足需要,再听听来人的要求,如果相互匹配那么招聘成功率就很高了
多元函数的极值及其求法如下: 1、利用极限四则运算性质或者函数连续性求极限。 2、利用恒等变形求极限,主要是消去分母中极限为零的因子(分子分母有理化)。 3、利
矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇
一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变