彷徨爱情
数学家欧拉的故事:
18世纪中叶,欧拉和其他数学家在解决物理问题过程中,创立了微分方程这门学科。值得提出的是,偏微分方程的纯数学研究的第一篇论文是欧拉写的《方程的积分法研究》 。欧拉还研究了函数用三角级数表示的方法和解微分方程的级数法等等。
欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达式。1766年他出版了《关于曲面上曲线的研究》,建立了曲面理论。这篇著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的一个里程碑。欧拉在分析学上的贡献不胜枚举。
如他引入了Γ函数和B函数,证明了椭圆积分的加法定理,最早引入了二重积分等等。数论作为数学中一个独立分支的基础是由欧拉的一系列成果所奠定的。他还解决了著名的组合问题:柯尼斯堡七桥问题。在数学的许多分支中都常常见到以他的名字命名的重要常数、公式和定理。
欧拉是18世纪数学界的中心人物。他是继牛顿(Newton)之后最重要的数学家之一。在他的数学研究成果中,首推第一的是分析学。欧拉把由伯努利家族继承下来的莱布尼茨学派的分析学内容进行整理,为19世纪数学的发展打下了基础。
他还把微积分法在形式上进一步发展到复数范围,并对偏微分方程,椭圆函数论,变分法的创立和发展留下先驱的业绩。在《欧拉全集》中,有17卷属于分析学领域。他被同时代的人誉为“分析的化身”。
欧拉将数学分析方法用于力学,在力学各个领域中都有突出贡献;他是刚体动力学和流体力学的奠基者,弹性系统销定性理论的开创人。
在1736年出版的两卷集《力学或运动科学的分析解说》中,他考虑了自由质点和受约束质点的运动微分方程及其解。欧拉在书中把力学解释为“运动的科学”,不包括“平衡的科学”即静力学。
参考资料来源:百度百科-莱昂哈德·欧拉
大坏蛋make
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×= (千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米), =(千米),×2=261(千米)和45×=(千米),=(千米), ×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
薛苏一世
数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!
cangyingvvv
欧拉生平简介莱昂哈德·欧拉的画像(6张)欧拉1707年4月15日出生于瑞士,在那里受教育。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时新发明的微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作。 欧拉的一生很虔诚。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战德尼·狄德罗:“先生,(a+b)n/n = x;所以上帝存在,这是回答!” 欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了。 小行星欧拉2002是为了纪念欧拉而命名的。贡献“欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样),这句话对欧拉那无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为“分析的化身”。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。 欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了事迹欧拉诞辰300周年纪念活动(8张)欧拉的数学生涯开始于牛顿(Newton)去世的那一年。对于欧拉这样一个天才人物,不可能选择到一个更有利的时代了。解析几何(1637年问世)已经应用了90年,微积分大约50年,牛顿(Newton)万有引力定律这把物理天文学的钥匙,摆到数学界人们面前已40年。在这每一个领域之中,都已解决了大量孤立的问题,同时在各处做了进行统一的明显尝试。但是还没有像后来做的那样,对整个数学,纯粹数学和应用数学,进行任何有系统的研究。特别是笛卡儿(Descrates)、牛顿(Newton)和莱布尼茨(Leibniz)强有力的分析方法还没有像后来那样被充分运用,尤其在力学和几何学中更是如此。 那时代数学和三角学已在一个较低的水平土系统化并扩展了。特别是后者已经基本完善。在费马(Fermat)的丢番图分析和一般整数性质的领域里则不可能有任何这样的"暂时的完善"(甚至到现在也还没有)。但就在这方面,欧拉也证明了他确是个大师。事实上,欧拉多方面才华的最显著特点之一,就是在数学的两大分支--连续的和离散的数学中都具有同等的能力。 作为一个算法学家,欧拉从没有被任何人超越过。也许除了雅可比之外,也没有任何人接近过他的水平。算法学家是为解决各种专门问题设计算法的数学家。举个很简单的例子,我们可以假定(或证明)任何正实数都有实数平方根。但怎样才能算出这个根呢?已知的方法有很多,算法学家则要设计出切实可行的具体步骤来。再比如,在丢番图分析中,还有积分学里,当一个或多个变量被其他变量的函数进行巧妙的(常常是简单的)变换之前,问题往往不可能解决。算法学家就是自然地发现这种窍门的数学家。他们没有任何同一的程序可循,算法学家就像随口会作打油诗的人--是天生的,而不是造就的。 目前时尚轻视"小小算法学家"。然而,当一个真正伟大的算法学家像印度的罗摩奴阔一样不知从什么地方意外来临的时候,就是有经验的分析学者也会欢呼他是来自天国的恩赐:他那简直神奇的对表面无关公式的洞察力,会揭示出隐藏着的由一个领域导向另一个领域的线索。从而使分析学者得到为他们提供的弄清这些线索的新题目。算法学家是"公式主义者",他们为了公式本身的缘故而喜欢美观的形式。成就 欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。 他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。 他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。 在数论里他引入了欧拉函数。 自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如,,因为有四个自然数1,3,5和7与8互质。 在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。 在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。 他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声: :其中是黎曼函数。 欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心。 在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公'”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式): :在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数: :他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。 在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来。 一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作。 在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽。 在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系:: 其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。 这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形,则::其中χ为此流形的欧拉特征值,在流形的连续变形下是不变量。 单联通流形,例如球面或平面,的欧拉特征值是2。 对任意的平面图,欧拉公式可以推广为:,其中为图中连通分支数。 在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法(Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。 数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行 最有影响的100人--欧拉评价欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。十八世纪瑞士数学家和物理学家伦哈特·欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。 欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。 早在上一个世纪,艾萨克·牛顿就提出了力学的基本定律。欧拉特别擅长论证如何把这些定律运用到一些常见的物理现象中。例如,他把牛顿定律运用到流体运动,建立了流体力学方程。同样他通过认真分析刚体的可能运动并应用牛顿定律建立了一个可以完全确定刚体运动的方程组。当然在实际中没有物体是完全刚体。欧拉对弹性力学也做出了贡献,弹性力学是研究在外力的作用下固体怎样发生形变的学说。 欧拉的天才还在于他用数学来分析天文学问题,特别是三体问题,即太阳、月亮和地球在相互引力作用下怎样运动的问题。这个问题——二十一世纪仍要面临的一个问题——尚未得到完全解决。顺便提一下,欧拉是十八世纪独一无二的杰出科学家。他支持光波学说,结果证明他是正确的。 欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家琼·巴普蒂斯特·傅里叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里时方程。这套方程在物理学的许多不同的领域都有着广泛应用,其中包括声学和电磁学’ 在数学方面他对微积分的两个领域——微分方程和无穷级数——特别感兴趣‘他在这两方面做出了非常重要的贡献,但是由于专业性太强不在此加以叙述。他对变分学和复数学的贡献为后来所取得的一切成就奠定了基础。这两个学科除了对纯数学有重要的意义外,还在科学工作中有着广泛的应用。欧拉公式eiQ=cosθ十isinθ表明了三角函数和虚数之间的关系,可以用来求负数的对数,是所有数学领域中应用最广泛的公式之一。欧拉还编写了一本解析几何的教科书,对微分几何和普通几何做出了有意义的贡献。 欧拉不仅在做可应用于科学的数学发明上得心应手,而且在纯数学领域也具备几乎同样杰出的才能。但是他对数论做出的许多贡献非常深奥难懂,不宜在此叙述。欧拉也是数学的一个分支拓扑学领域的先驱,拓扑学在二十世纪已经变得非常重要。 最后要提到的一点也很重要,欧拉对目前使用的数学符号制做出了重要的贡献。例如,常用的希腊字母π代表圆周率就是他提出来的。他还引出许多其它简便的符号,现在的数学中经常使用这些符号。 欧拉于1707年出生在瑞士巴塞尔。1720他十三岁时就考入了巴塞尔大学,起初他学习神学,不久改学数学。他十七岁在巴塞尔大学获得硕士学位,二十岁受凯瑟林一世的邀请加入圣彼得斯堡科学院。他二十三岁成为该院物理学教授,二十六岁就接任著名数学家但尼尔·伯努利的职务,成为数学所所长。两年后,他有一只眼睛失明,但仍以极大的热情继续工作,写出了许多杰出的论文。 1741年普鲁士弗雷德里克大帝把欧拉从俄国引诱出来,让他加入了柏林科学院。他在柏林呆了二十五年后于1766年返回俄国。不久他的另一只眼睛也失去了光明。即使这样的灾祸降临,他也没有停止研究工作。欧拉具有惊人的心算才能,他不断地发表第一流的数学论文,直到生命的最后一息。1783年他在圣彼得斯堡去逝,终年七十六岁。欧拉结过两次婚,有十三个孩子,但是其中有八个在襁褓中就死去了。 即使没有欧拉其人,他的一切发现最终也会有人做出。但是我认为做为衡量这种情况的尺度应该提出这样的问题:要是根本就没有人能做出他的发现,科学和现代世界会有什么不同呢?就伦哈特·欧拉的情况而言,答案看来很明确:假如没有欧拉的公式、方程和方法,现代科学技术的进展就会滞后不前,实际上看来是不可想象的。浏览一下数学和物理教科书的索引就会找到如下查照:欧拉角(刚体运动)、欧拉常数(无穷级数)、欧拉方程(流体动力学)、欧拉公式(复合变量)、欧拉数(无穷级数)、欧拉多角曲线(微分方程)、欧拉齐性函数定理摘微分方程)、欧拉变换(无穷级数)、伯努利—欧拉定律(弹性力学)、欧拉—傅里叶公式(三角函数)、欧拉—拉格朗日方程(变分学,力学)以及欧拉一马克劳林公式(数字法),这里举的仅仅是最重要的例子。 从所有这一切来看,读者可能要问为什么在本书中没有把欧拉的名次排得更高些,其主要原因在于虽然欧拉在论证如何应用牛顿定律方面获得了杰出的成就,但是他自己从未发现任何独创的科学定律,这就是为什么要把威廉·康拉德,伦琴和格雷戈尔·孟德尔这样的人物排在他前面的原因。他们每个人主要是发现了新的科学现象或定律。尽管如此,欧拉对科学、工程学和数学的贡献还是巨大的。以欧拉之名欧拉公式 欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等等欧拉函数 欧拉函数,在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。欧拉定理 在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。欧拉角 用来确定定点转动刚体位置的3个一组独立角参量,由章动角θ、旋进角(即进动角)ψ和自转角j组成,为欧拉首先提出而得名。欧拉方程 1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。 在研究一些物理问题,如热的传导、圆膜的振动、电磁波的传播等问题时,常常碰到如下形式的方程: (ax^2D^2+bxD+c)y=f(x), 其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D^2y的系数是二次函数ax^2,一阶导数Dy的系数是一次函数bx,y的系数是常数。这样的方程称为欧拉方程。
Sunny彩妆半永久
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域.此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作.除了教科书外,欧拉平均以每年800页的速度写出创造性论文.他去世后,人们整理出他的研究成果多达74卷. 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础. 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目.他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示.此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为…… 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科.其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法.欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文. 在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式.在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑.他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用.此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式. 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等. 在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式.欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支.欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积.而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学. 欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理.
湘剑狠皖
莱昂哈德·欧拉Leonhard Euler 1707年4月5日~1783年9月18日 是瑞士数学家和物理学家。他被称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。"欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样°(阿拉戈语),这封伦纳德.欧拉(1707--1783)无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为"分析的化身"。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。�0�2欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了。欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。�0�2他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。�0�2他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。�0�2在数论里他引入了欧拉函数。�0�2自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如,,因为有四个自然数1,3,5和7与8互质。�0�2在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。�0�2在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。�0�2他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:�0�2:其中是黎曼函数。�0�2欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心。�0�2在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公'”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式):�0�2:在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数:�0�2:他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。�0�2在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来。�0�2一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作。�0�2在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽。�0�2在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系::�0�2其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。�0�2这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形,则::其中χ为此流形的欧拉特征值,在流形的连续变形下是不变量。�0�2单联通流形,例如球面或平面,的欧拉特征值是2。�0�2对任意的平面图,欧拉公式可以推广为:,其中为图中连通分支数。�0�2在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法(Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。�0�2数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行
馨阳北京
1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。欧拉出生於牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。1727年,在丹尼尔伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一伯努利,成为物理学教授。在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典着作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值 ,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为 ……在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了 n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示 z对 x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的哥尼斯堡七桥问题,创立了拓扑学。欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。
大学导数单调性极值的应用的背景: 利用导数研究函数单调性极值最值的理论就一个是导函数在某个区间大于0,则原函数在这个区间单调递增,导函数在某个区间小于0,则原函
给你点资料吧,呵呵。二次函数的实际应用——二次函数与物理的关系 二次函数是数学中很重要的一部分,想必与物理有相当密切的关系,毕竟数学和物理都属理科。物理学的各种
1、拉拉秧是一种野生的植物,它的医用价值极高,具有清火解毒、利尿消肿的功效,一般对于小便不利、疟疾、腹泻等症状的治疗效果显著。 2、同时,它对革兰氏阴性细菌、
数学论文反比例函数基础知识的应用2009-09-16 17:26:25 来源:网络 一、反比例函数的基础知识1.一般地,形如y=(k为常数,k≠0)的函数称为反
故事是这样的 以前在各大学校里都流传着这么一个恐怖故事 说是A校有不干净的东西 每当十五的时候 学校门口的鲁迅像的眼睛就会动 所有教学楼都会停电 楼梯会从原来的