• 回答数

    4

  • 浏览数

    140

斯蕾油画
首页 > 学术论文 > 天文学发展的论文参考文献

4个回答 默认排序
  • 默认排序
  • 按时间排序

niftynifty

已采纳

天文观测精确地检验了牛顿力学,并把它推上科学巅峰 1845年,当时的巴黎天文台台长阿喇果(Dominique F. J. Arago)建议勒威耶(Urbain Le Verrier)研究天王星运动的反常问题。勒威耶利用有关天王星的大量观测资料,运用牛顿万有引力定律计算出对天王星起摄动作用的未知行星的轨道和质量,并且预测了它的位置。他将计算结果呈送给法国科学院,与此同时他还写信给当时拥有较大望远镜的几位天文学家,请求帮助观测。他的工作在法国同行中受到了冷遇,但是却获得了德国天文学家伽勒(Johann G. Galle)的协助。1846年9月23日,伽勒收到勒威耶信的当天晚上就进行了观测搜寻。他仅用一个半小时就在偏离勒威耶预言的位置52′处观测到了这颗当时星图上没有的星,即后来大名鼎鼎的海王星。海王星的发现把牛顿力学推上了科学的巅峰。 后来,勒威耶发现水星的近日点进动,在排除太阳引力和其它已知天体的轨道摄动影响后,还有每百年43角秒的多余进动。这是牛顿引力所不能解释的。受海王星发现的启示,勒威耶由此预言了“水内行星”的存在。然而勒威耶穷其一生也无法找到这颗预言的行星。他的水星近日点进动观测结果后来被爱因斯坦用广义相对论成功地加以解释。与牛顿力学不同,在广义相对论中,两个没有自转的物体之间的引力与它们自转起来之后的引力是不同的。这一效应会引起自转轴的进动,水星进动就是由这一效应所产生的。 天文观测对爱因斯坦广义相对论的验证 广义相对论的验证主要是通过天文观测进行的。“天文验证”之一是用广义相对论成功地解释了水星近日点进动问题,计算的进动值在扣除了其它行星的影响后为每100年移动〃,与观测值——43〃十分吻合。后来观测到的地球、金星等行星近日点的进动值也与广义相对论的计算值吻合得相当好。 “天文验证”之二是利用日全食的观测,验证了引力场中光线弯曲的量是符合广义相对论的。1911年,爱因斯坦就在理论上预言了这一现象。他认为在发生日全食时,可以通过测量太阳附近引力场的某一恒星的星光,与先前这颗恒星的位置相比较,便可以测出偏转的角度。从1912年到1922年,天文学家进行了多次日全食观测。特别是英国著名天文学家爱丁顿(Arthur S. Eddington)自爱因斯坦提出这一理论开始就支持他的预言,并为此做了大量的日全食观测。爱因斯坦关于“太阳的引力可能引起恒星光线偏折”预言的正确性,经坎普贝尔(William W. Campbell)1922年的观测结果的检验才最终被主流科学界所确认。。 “天文验证”之三是在一颗白矮星上观测到了谱线的引力红移。广义相对论认为,光线在引力场中传播时,它的频率会发生变化。当光线从引力场强的地方传播到引力场弱的地方时,其频率会略有降低,即发生引力红移现象。1911年,爱因斯坦计算从太阳射到地球的光线的相对引力红移变化是2×10-6。这个数值很小,测量起来相当困难。而白矮星的质量与太阳接近,但半径只有太阳的百分之一,其发出光的引力红移效应比较显著。1925年,美国天文学家亚当斯(Walter S. Adams)观测了一颗白矮星(天狼星B),测到的引力红移与广义相对论的理论计算值基本相符。 值得一提的是,在1974年,美国科学家赫尔斯(Russell A. Hulse)和泰勒(Joseph H. Taylor)发现了一颗新的脉冲双星PSR1913+16。通过对这颗脉冲星的转动周期衰减测量,间接证实了广义相对论所预言的引力波。赫尔斯和泰勒也由于此项工作而荣获1993年诺贝尔物理学奖。 天文观测推翻了托勒玫地心说的统治地位 哥白尼通过三十年的天象观测,渐渐地对长期以来居于宗教统治地位的托勒玫地心说产生了怀疑。哥白尼在他的《天体运行论》中详细讨论太阳、地球、月亮和各个行星的运动,认为太阳是不动的,是宇宙的中心,而地球只是一个围绕太阳转动的普通行星。 1609年,伽利略首次将望远镜用于天文观测,并以此发现了一些可以支持日心说的新的天文现象后,日心说才开始引起人们的关注。这些天文现象主要是木卫体系的发现直接说明了地球不是唯一中心,金星盈亏的发现暴露了托勒玫地心说体系的错误。然而,由于支持哥白尼日心说的数据与支持托勒玫体系的数据都不能与第谷的观测相吻合,因此日心说当时仍不具有优势。直至开普勒以椭圆轨道取代圆形轨道修正了日心说之后,日心说在与地心说的长期斗争中才取得了真正的胜利。人类终于认识到地球不是宇宙的中心。德国诗人歌德曾说:“哥白尼撼动人类意识之深,自古无一种创见、无一种发明,可与之相比。”可以毫不夸张地说是哥白尼的日心说揭开了近代科学革命的序幕。 然而,太阳真的位于宇宙中心吗?这是人们一直非常关心的问题。自从18世纪以来,包括赫歇尔等在内的许多著名天文学家,都认为太阳是在银河系中心。美国天文学家沙普利(Harlow Shapley)通过观测发现球状星团并不均匀地分布在全天,而是比较集中在南天,尤其是人马座一带。他大胆而明确地提出,这是由于太阳并不在银河系中心,而是远离中心的缘故,银河系中心在人马座方向。沙普利把太阳从银河系中心挪开,放到它应该在的地方,其见解意义重大。 1924年,哈勃利用威尔逊山天文台的米望远镜分析一批造父变星的亮度以后断定,这些造父变星和它们所在的“星云”距离我们远达几十万光年,因而一定位于银河系外。这一发现使人们不得不改变对宇宙的看法,即银河系在宇宙中也是一个非常普通的星系。1925年,哈勃对河外星系的最新观测显示星系看起来都在远离我们而去,且距离越远,远离的速度越快。这项发现是20世纪天文学的重大成就,它颠覆了人类对宇宙已往的理解与认识。一直以来,人们都认为宇宙是静止的,而现在发现宇宙是在膨胀的,这一结论意义深远。今天,通过天文观测,人类终于认识到宇宙是没有中心的,整个宇宙各个部分都在彼此远离,并正在加速膨胀。 天文观测正逐渐推翻地球是宇宙生命中心说 人类在抛弃地球是宇宙中心地位的过程中,也提出了地球是否是宇宙中唯一的生命家园,即地球是不是宇宙生命中心的问题。事实上,每个人都在根据自己的认识来寻找着上述问题的答案。对这些问题的回答与思考贯穿于整个文学、艺术和科学的发展史中。新的科学发现使我们更为接近揭开太阳系外生命的一些基本问题,但又提出了更多的新问题。 随着新千年的到来,人类希望凭借自己掌握和拥有的先进的科学和技术能力来回答这些最古老和深奥的问题。虽然对此问题尚无确切的答案,但是至少太阳系外行星存在的理论已为近年的最新天文观测所证实。90年代以来,通过大口径光学望远镜观测,对发现具有类似太阳系的恒星行星系统有了许多突破性进展。到目前为止,天文学家已确定了400余颗有行星系统的恒星候选体。观测还表明,这些具有行星环绕的恒星系统和行星本身都存在多样性。约40颗恒星行星系统具有多行星存在,其中一个恒星系统拥有5颗行星,2个恒星系统拥有4颗行星。从统计来看,至少5%的类太阳恒星存在行星系统。最近已探测到一颗质量大约为2个地球质量的类地行星候选体。特别令人振奋的是天文学家相继在多个行星状星云和多颗行星上发现了生命所必需的一氧化碳、二氧化碳、甲烷和水等大气谱线。天文学家甚至已经能够通过大望远镜和先进的技术方法直接观测到围绕恒星旋转的行星了。目前,通过太阳系外行星的探测,正朝着推翻宇宙生命中心说的方向发展。越来越多的天文观测表明,地球并不是宇宙中唯一存在生命的星球。 我们有理由相信,人类与生俱来的好奇心和求知欲将是驱动人们进行太阳系外行星及其生命搜寻的原动力。新的天文观测和发现必将并继续深刻地影响和改变着整个人类的宇宙观,不断加深人类对宇宙的认识。这种在理性指导下的实践活动体现了现代的科学探索精神,也必将为人类认识自然、与自然和谐相处带来无穷的益处。

89 评论

penny900627

天文学的。有案例的。要求是,。具体的格式。

213 评论

暗旦无光

浅论天文天文学历史 天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。 古时候,人们通过用肉眼观察太阳、月亮、星星来确定时间和方向,制定历法,指导农业生产,这是天体测量学最早的开端。早期天文学的内容就其本质来说就是天体测量学。从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。 十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。 二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。 天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。 人类很早以前就想到太空畅游一番了。1903年人类在地球上开设了第一家月亮公园。花50美分就能登上一个雪茄状、带翼的车,然后车身剧烈摇晃,最后登上一个月亮模型。 同一年,莱特兄弟在空中哒哒作响地飞行了59秒,同时一位名为康斯坦丁·焦乌科夫斯基、自学成才的俄罗斯人发表了题为《利用反作用仪器进行太空探索》的文章。他在文内演算,一枚导弹要克服地球引力就必须以1.8万英里的时速飞行。他还建议建造一枚液体驱动的多级火箭。 50年代,有一个公认的基本思想是,哪个国家第一个成功地建立永久性宇宙空间站,它迟早就能控制整个地球。冯·布劳恩向美国人描述了洲际导弹、潜艇导弹、太空镜和可能的登月旅行。他曾设想建立一个经常载人的、并能发射核导弹的宇宙空间站。他说:“如果考虑到空间站在地球上所有有人居住的地区上空飞行,那么人们就能认识到,这种核战争技术会使卫星制造者在战争中处于绝对优势地位。 1961年,加加林成为进入太空的第一人。俄国人用他说明,在天上飞来飞去的并不是天使,也不是上帝。美国约翰·肯尼迪竞选的口号是“新边疆”。他解释说:“我们又一次生活在一个充满发现的时代。宇宙空间是我们无法估量的新边疆。”对肯尼迪来说,苏联人首先进入宇宙空间是“多年来美国经历的最惨痛的失败”。唯一的出路是以攻为守。1958年美国成立了国家航空航天局,并于同年发射了第一颗卫星“探险者”号。1962年约翰·格伦成为进入地球轨道的第一位美国人。 许多科学家本来就对危险的载人太空飞行表示怀疑,他们更愿意用飞行器来探测太阳系。 而美国人当时实现了突破:三名宇航员乘“阿波罗号”飞船绕月球飞行。在这种背景下,计划在1969年1月实现的两艘载人飞船的首次对接具有特殊的意义。 20世纪的80年代,苏联的第三代空间站“和平”号轨道站使其航天活动达到高峰,都让美国人感到眼热。“和平”号被誉为“人造天宫”,1986年2月20日发射上天,是迄今人类在近地空间能够长期运行的唯一载人空间轨道站。它与其相对接的“量子1号”、“量子2号”、“晶体”舱、“光谱”舱、“自然”舱等舱室形成一个重达140吨、工作容积400立方米的庞大空间轨道联合体。在这一“太空小工厂”相继考察的俄罗斯和外国宇航员有106名,进行的科考项目多达万个,重点项目600个。 在“和平”号进行的最吸引人的实验是延长人在太空的逗留时间。延长人在空间的逗留时间是人类飞出自己的摇篮地球、迈向火星等天体最为关键的一步,要解决这一难题需克服失重、宇宙辐射及人在太空所产生的心理障碍等。俄宇航员在这方面取得重大进展,其中宇航员波利亚科夫在“和平”号上创造了单次连续飞行438天的纪录,这不能不被视为20世纪航天史上的一项重要成果。在轨道站上进行了诸如培养鹌鹑、蝾螈和种植小麦等大量的生命科学实验。 如果将和平号空间站看作人类的第三代空间站,国际空间站则属于第四代空间站了。国际空间站工程耗资600多亿美元,是人类迄今为止规模最大的载人航天工程。它从最初的构想和最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面折射出历史的一段进程。 国际空间站计划的实施分3个阶段进行。第一阶段是从1994年开始的准备阶段,现已完成。这期间,美俄主要进行了一系列联合载人航天活动。美国航天飞机与俄罗斯“和平”号轨道站8次对接与共同飞行,训练了美国宇航员在空间站上生活和工作的能力;第二阶段从1998年11月开始:俄罗斯使用“质子-K”火箭把空间站主舱——功能货物舱送入了轨道。它还担负着一些军事实验任务,因此该舱只允许美国宇航员使用。实验舱的发射和对接的完成,将标志着第二阶段的结束,那时空间站已初具规模,可供3名宇航员长期居住;第三阶段则是要把美国的居住舱、欧洲航天局和日本制造的实验舱和加拿大的移动服务系统等送上太空。当这些舱室与空间站对接后,则标志着国际空间站装配最终完成,这时站上的宇航员可增至7人。 美、俄等15国联手建造国际空间站,预示着一个各国共同探索和和平开发宇宙空间的时代即将到来。不过,几十年来载人航天活动的成果还远未满足他们对太空的渴求。“路漫漫其休远兮,吾将上下而求索”,人类一直都心怀征服太空的欲望和和平利用太空资源的决心。1998年11月,人类第一个进入地球轨道的美国宇航员、77岁的老格伦带着他未泯的雄心再次踏上了太空征程,这似乎在告诉人类:照此下去,征服太空不是梦。 [编辑本段]天文学概况 天文和气象不同,它的研究对象是地球大气层外各类天体的性质和天体上发生的各种现象——天象,而气象研究的对象是地球大气层内发生的各种现象——气象。 天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。 宇宙中的天体由近及远可分为几个层次:(1)太阳系天体:包括太阳、行星(包括地球)、行星的卫星(包括月球)、小行星、彗星、流星体及行星际介质等。(2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。(3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。 天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。天文学按照研究的内容还可分为天体测量学、天体力学和天体物理学三门分支学科。 天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。天文学家也将密切关注灾难性天文事件——如彗星与地球可能发生的相撞,及时作出预防,并作出相应的对策。[编辑本段]太阳系 (注:在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八大行星。文中所有涉及“九大行星”的都已改为“八大行星”。) 太阳系(solar system)是由太阳、8颗大行星、66颗卫星以及无数的小行星、彗星及陨星组成的。 行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)和海王星(neptune)。 离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(大于克/立方厘米)、体积小、自转慢、卫星少、主要由石质和铁质构成、内部成分主要为硅酸盐(silicate)并且具有固体外壳。 离太阳较远的木星、土星、天王星及海王星称为类木行星(jovian planets)。宇宙飞船也都对它们进行了探测,但未曾着陆。它们都有很厚的大气圈、主要由氢、氦、冰、甲烷、氨等构成、质量和半径均远大于地球,但密度却较低,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。 在火星与木星之间有100000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。 星,距离(AU),半径(地球),质量(地球),轨道倾角(度),轨道偏心率,倾斜度,密度(g/cm3) 太 阳,0 ,109 ,332,800 ,--- ,--- ,--- , 水 星 , , , ,7 , ,° , 金 星 , , , , , ,° , 地 球 , , ,, , ,° , 火 星 ,, , , ,, ° , 木 星 , , ,318 , , ,° , 土 星 ,, ,95 , , ,° , 天王星 ,, ,17 , , ,° , 海王星 , , ,17 , , ,° , 行星离太阳的距离具有规律性,即从离太阳由近到远计算,行星到太阳的距离(用a表示)a=*2n-2(天文单位)其中n表示由近到远第n个行星(详见上表) 地球、火星、木星、土星、天王星、海王星的自转周期为12小时到一天左右,但水星、金星自转周期很长,分别为天和243天,多数行星的自转方向和公转方向相同,但金星则相反。 除了水星和金星,其它行星都有卫星绕转,构成卫星系。 在太阳系中,现已发现1600多颗彗星,大致一半彗星是朝同一方向绕太阳公转,另一半逆向公转的。彗星绕太阳运行中呈现奇特的形状变化。 太阳系中还有数量众多的大小流星体,有些流星体是成群的,这些流星群是彗星瓦解的产物。大流星体降落到地面成为陨石。 太阳系是银河系的极微小部分,太阳只是银河系中上千亿个恒星中的一个,它离银河系中心约千秒差距,即不到3万光年。太阳带着整个太阳系绕银河系中心转动。可见,太阳系不在宇宙中心,也不在银河系中心。 太阳是50亿年前由星际云瓦解后的一团小云塌缩而成的,它的寿命约为100亿年。[编辑本段]宇宙航天 宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。 大爆炸理论 (big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实: (1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明了这一点。 (2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。 (3)在各种不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。 (4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。

315 评论

轻清净静的美好

浩瀚的宇宙魅力无穷,它吸引着无数的科学志士为之求索探秘。千百年来,人们为了认识天体和宇宙的奥秘,不屈不挠地探求着。伟大的波兰天文学家哥白尼有一句名言:“人类的天职是勇于探索”,中国古代诗人屈原说过:“路漫漫,其修远兮,吾将上下而求索”,可见探索天文知识是人类永恒的科学主题。 天文学是人类运用所掌握的最新的物理学、化学、数学等知识以及最尖端的科学技术手段,对宇宙中的恒星、行星、星系以及其它像黑洞等天文现象进行专业研究的一门科学.它是一门集人类智慧之大成的综合系统。 天文学主要研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化。随着天文学的发展,人类的探测范围由目测的太阳、月球、天空中的星星到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为:行星层次,恒星层次以及整个宇宙。 天文学的一个重大课题是各类天体的起源和演化。天文学和其他学科一样,都随时同许多邻近科学互相借鉴,互相渗透。天文观测手段的每一次发展,又都给应用科学带来了有益的东西。 天文学的研究对于我们的生活有很大的实际意义,对于人类的自然观有很大的影响。古代的天文学家通过观测太阳、月球和其他一些天体及天象,确定了时间、方向和历法。这也是天体测量学的开端。如果从人类观测天体,记录天象算起,天文学的历史至少已经有5、6千年了。天文学在人类早期的文明史中,占有非常重要的地位。埃及的金字塔、欧洲的巨石阵都是很著名的史前天文遗址。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。 牛顿力学的出现,核能的发现等对人类文明起重要作用的事件都和天文研究有密切的联系。当前,对高能天体物理、致密星和宇宙演化的研究,能极大地推动现代科学的发展。对太阳和太阳系天体包括地球和人造卫星的研究在航天、测地、通讯导航等部门中都有许多应用。

126 评论

相关问答

  • 天文学发展的论文参考文献

    天文观测精确地检验了牛顿力学,并把它推上科学巅峰 1845年,当时的巴黎天文台台长阿喇果(Dominique F. J. Arago)建议勒威耶(Urbain

    斯蕾油画 4人参与回答 2023-12-12
  • 科学发展观论文的参考文献

    《简析科学发展观的精神实质及其意义》 摘要:科学发展观的提出,是马克思主义发展理论在当代中国的生动运用和体现,是对我国改革开放和现代化建设实践经验的总结和升华。

    你跑这么慢 2人参与回答 2023-12-08
  • 明朝儒学的发展论文参考文献

    发展:宋明时期儒学的发展包括“程朱理学”和“陆王心学”两个阶段。程朱理学的核心是“天理”说和“格物致知”论,“陆王心学”是理学发展的新阶段,其核心是“心即理”、

    julystar77 5人参与回答 2023-12-06
  • 川菜的发展论文参考文献

    古典蜀烹调与中原、江南烹饪的分野出现在东汉末与魏晋时期:东汉建立以后,四川的经济文化继续发展,它的烹饪文化开始表现出自己的特色。第二节里介绍的忠县东汉墓葬中的“

    有多久没见你 5人参与回答 2023-12-12
  • 有关力学发展的论文参考文献

    省竞赛还是国家竞赛??其实这个最好咨询你们的物理老师。。

    708带你去吃吧 5人参与回答 2023-12-11