• 回答数

    4

  • 浏览数

    238

雨天依然美丽
首页 > 学术论文 > 水泵论文范文

4个回答 默认排序
  • 默认排序
  • 按时间排序

yiranrenxiaoyao

已采纳

随着我国电力技术和科技的快速发展,电力变频器广泛的应用于工业生产以及人类日常生活中。这是我为大家整理的变频器应用技术论文参考 范文 ,仅供参考! 变频器应用技术论文参考范文篇一:《变频器节能技术应用与研究》 【摘 要】本文根据水泵、风机轴功率与转速的平方成正比的特点,阐述变频调速节能原理,提出泵与风机应采用变频技术,已降低成本,延长设备使用寿命,提高经济效益。 【关键词】变频器;节能;水泵;风机 0 引言 锅炉是比较常见的用于集中供热设备,通常情况下,由于气温和负荷的变化,需对锅炉燃烧情况进行调节,传统的调节方式其原理是依靠增加系统的阻力,水泵采用调节阀门来控制流量,风机采用调节风门挡板开度的大小来控制风量。但在运行中调节阀门、挡板的方式,不论供热需求大小,水泵、风机都要满负荷运转,拖动水泵、风机的电动机的轴功率并不会改变,电动机消耗的能量也并没有减少,而实际生产所需要的流量一般都比设计的最大流量小很多,因而普遍存在着“大马拉小车”现象。锅炉这样的运行方式不仅损失了能量,而且增大了设备损耗,导致设备使用寿命缩短,维护、维修费用高。把变频调速技术应用于水泵(或风机)的控制,代替阀门(或挡板)控制就能在控制过程中不增加管路阻力,提高系统的效率。变频调速能够根据负荷的变化使电动机自动、平滑地增速或减速,实现电动机无级变速。变频调速范围宽、精度高,是电动机最理想的调速方式。如果将水泵、风机的非调速电动机改造为变频调速电动机,其耗电量就能随负荷变化,从而节约大量电能。 1 变频器应用在水泵、风机的节能原理 图1为水泵(风机)的H-Q关系曲线。图1中,曲线R2为水泵(风机)在给定转速下满负荷时,阀门(挡板)全开运行时阻力特征曲线;曲线 R1为部分负荷时,阀门(挡板)部分开启时的阻力特性曲线;曲线H(n1)和H(n2)表示不同转速时的Q=f(H)曲线。采用阀门(挡板)控制时,流(风)量从Q2减小到Q1,阻力曲线从R2移到R1,扬程(风压)从HA移到HB。采用调速控制时,H(n2)移到H(n1),流(风)量从Q2减小到Q1,扬程(风压)从HA移到HC。 图1 水泵(风机)的H-Q关系曲线 图2为水泵(风机)的P-Q的关系曲线。由图2可以看出,流(风)量Q1时,采用阀门(挡板)控制的功率为PB。采用变频调速控制的功率为 PC。ΔP=PB-PC就是节省的功率。 图2 为水泵(风机)的P-Q的关系曲线 如果不计风机的效率η,则采用阀门(挡板)时的功率消耗在图中由面积OHBBQ1所代表,而采用调速控制时的功率消耗由面积OHCCQ1所代表,后者较前者面积相差为HCHBBC,即采用调速控制流(风)量比采用阀门(挡板)控制可节约能量。 2 水泵、风机的节能计算和分析 通常转速n与频率f成正比,若将电动机的运行频率由原来的50Hz降至40Hz时,其实际转速则降为额定转速的80%,即实际转速nsn和额定转速nn:nsn=(■)nn=。设K为电机过载系数,则电动机额定功率Pn=Kn■■。因此电动机运行在40Hz时,实际功率为: Psn=Kn■■=K()3=■■= 节能率 =■=■=■= 表1 电动机节能率 供热公司胜利锅炉房将电动机改为变频调速,其中: 表2 补水泵电动机在定速和变速不同情况下测出的数据 根据表2的数据,一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后补水泵电动机节约电费: ()×24×190×元 表3 鼓风机电动机在定速和变速不同情况下测出的数据 根据表3的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后鼓风机电动机节约电费: ()×24×190××5=元 表4 引风机电动机在定速和变速不同情况下测出的数据 根据表4的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后引风机电动机节约电费: ()×24×190××5=元 综上所述,胜利车间安装变频后,一个保温期合计节约电费: 元 节能效果明显。 通过上述分析和实际应用,锅炉水泵、风机采用变频调速后具有以下优点。 (1)水泵、风机的电动机工作电流下降,温升明显下降,同时减少了机械磨损,维修工作量大大减少。 (2)保护功能可靠,消除了电动机因过载或单相运行而烧坏的现象,延长了使用寿命,能长期稳定运行。 (3)电动机实现软起动,实现平滑地无级调速,精度高,调速范围宽(0-100%)。频率变化范围大(O-50Hz)。效率可高达(90%-95%)以上。减小了对电网的冲击。 (4)安装容易,调试方便,操作简便,维护量小。 (5)节能省电,燃煤效率提高。 (6)变频器可采用软件与计算机可编程控制器联机控制的功能,容易实现生产过程的自动控制。 3 结束语 引进变频器可以实现能源的有效利用,避免过多的能源消耗。使用变频器节能主要是通过改变电动机的转速实现流量和压力的控制,来降低管道阻力,减少了阀门半开的能源损失。其次变频状态下的水泵(风机)运行转速明显低于工频电源之下,这样能尽量减少由于摩擦带来的电力损耗。最后变频技术是一种先进的现代自动化技术,自动化的运行能增加电力运行的可靠性,节省人力投入,从而实现了成本的节约。 【参考文献】 [1]赵斌,莫桂强.变频调速器在锅炉风机节能改造中的应用[J].广西电力. [2]吴民强.泵与风机节能技术问答[M].北京:中国电力出版社,1998. [3]梁学造,蔡泽发.异步电动机的降损节能 方法 [Z].湖南省电力工业局. 变频器应用技术论文参考范文篇二:《变频器技术改造实践与应用》 【摘要】介绍了锅炉风机电机以及补水泵、循环泵电机等设备变频器技术改造实例及应用,并对变频器调速改造中应注意的一些技术问题进行了论述。 【关键词】自动化控制;变频器;技术改造 1 锅炉风机电机应用变频器调速控制 以Ⅱ热水锅炉为例,每台锅炉配置引风机和鼓风机各六台,各电机主要技术参数如下: 型号 容量(KW) 电压(V) 额定电流(A) 引风机 Y280S4 75 380 鼓风机 Y200L4 30 380 57 在进行变频器改造以前,各风机在正常情况下的运行数据统计如下: 平均电流 最大电流 最小电流 引风机 142 145 139 鼓风机 59 63 57 首先选择在1#5#炉的鼓、引风机上进行改造尝试,并考虑到风机电机功率设计时配置,选择相匹配功率的变频器来控制电机,变频器的型号为ABB ACS51001157A4(引风机)、ZXBP30(鼓风机),电压等级为380V,通过一段时间的运行测试,引风机工频电流由原来的平均140(A)下降到现在的平均95―110(A),鼓风机工频电流由原来的平均57(A)下降到现在的平均30(A)节能效果相当显著,并且变频器技术性能完全满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等),电机在启动、运行调节、控制操作等方面都得到极大的改善。变频调速由安装在锅炉操作台上的启动、停机、转速调整开关进行远程控制,并可同DCS系统接口,通过DCS实现变频器的调速控制,变频调速装置还提供报警指示、故障指示、待机状态、运行状态、连锁保护等保护信息以及转速给定值和风机实际转速值等必要指示,以便操作人员进行操作控制。 2 补水泵、循环泵电机应用变频器进行调节控制 以2台补水泵、4台循环泵实际应用为例,其电动机的技术参数分别为: 序号 型号 功率 额定电流 流量 补水泵 1#泵 Y180M4 25 2#泵 Y180M4 25 循环泵 1#泵 Y315M14 132 237 630 2#泵 Y315M14 132 237 630 3#泵 Y315M14 132 237 630 4#泵 Y2315M4 132 630 正常补水时泵出力太大,紧急补水时一台泵又不能满足耗水需要,同时启动时出力又太大,连续供水补水效率高,效果也好。补水泵改用变频器调节补水,不仅仅在于考虑它对电机的节能效益,更重要的是从生产设备运行安全角度考虑,变频器选用富士FRN132P11S―4CX,电压等级为380V。 为充分利用变频器,采用1台变频器来实现两台电机的调速控制;2台补水泵均可实现变速、定速两种方式运行,变频器在同一时间只能作一台电机的变频电源,所以每台电机启动、停止必须相互闭锁,用逻辑电路控制,保证可靠切换,出口采用双投闸刀切换;2台补水泵工作时,其中一台由工频供电作定速运行,另一台由变频器供电作变速运行,同一台电机的变速、定速运行由交流接触器相互闭锁,即在变速运行时,定速合不上,如下图中,1C1与1C2及2C1与2C2不允许同时合上;为确保工艺控制安全、可靠,变频器及两台电机的控制、保护、测量单元全部集中在就地控制柜内,控制调节通过屏蔽信号电缆引接到控制室; 图1 补水泵电机变频器接线,虚框内为改造增加部分3 变频器调速改造中应注意的一些技术问题 锅炉的安全运行是全队动力的根本保证,虽然变频调速装置是可靠的,但一旦出现问题,必须确保锅炉安全供热,所以,必须实现工频――变频运行的切换系统(旁路系统),在生产过程中,采用手工切换如能满足设备运行工艺要求,建议尽量不要选用自动旁路,对一般的小功率电机,采用双投闸刀方式作为手动、自动切换手段也是比较理想的方法。 对于大惯量负荷的电机(如锅炉引风机),在变频改造后,要注意风机可能存在扭曲共振现象,运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算或测量风机――电机连接轴系扭振临界转速以及采取相应的技术 措施 (如设置频率跳跃功能避开共振点、软连接及机座加震动吸收橡胶等)。 采用变频调速控制后,如果变频器长时间运行在1/2工频以下,随着电机转速的下降,电机散热能力也下降,同时电机发热量也随之减少。所以电机的本身温度其实是下降的,仍旧能够正常运行而不至温度过高。 变频器不能由输出口反向送电,在电气回路设计中必须注意,如在补水泵和循环泵变频器改造接线图中,要求1C1与1C2及2C1与2C2不允许同时合上,不仅要求在电气二次回路中实现电气的连锁,同时要求在机械上实现机构互锁,以确保变频器的运行安全。 低压变频器,由于体积较小,在改造中的安装地点选择比较容易些。选择变频器室位置,既要考虑离电机设备不能太远,又要考虑周围环境对变频器运行可能造成的影响。变频器的安装和运行环境要求较高,为了使变频器能长期稳定和可靠运行,对安装变频器室的室内环境温度要求最好控制在0-40℃之间,如果温度超过允许值,应考虑配备相应的空调设备。同时,室内不应有较大灰尘、腐蚀或爆炸性气体、导电粉尘等。 要保证变频器柜体和厂房大地的可靠连接,保证人员和设备安全。为防止信号干扰,控制系统最好埋设独立的接地系统,对接地电阻的要求不大于4Ω。到变频器的信号线,必须采用屏蔽电缆,屏蔽线的一端要求可靠接地。 随着电力电子技术的发展,变频器的各项技术性能也得到拓宽和提高,在热电行业中,风机水泵类负荷较多,充分应用变频器进行节能改造已经逐渐被大家所接受。对于目前低压变频器,投资较低、效益高,一年左右就可以收回投资而被广泛应用。随着目前国产变频器的迅速发展,使得变频器的性能价格比大大提高,为利用变频器进行节能技术改造提供了更加广阔的前景。 参考文献: [1]王占奎.变频调速应用百例.北京:科学出版社出版, [2]吴忠智,吴加林.变频器应用手册.北京:机械工业出版社, 变频器应用技术论文参考范文篇三:《浅议变频调速技术的应用》 摘要:调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(IntelligentPowerModule)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。 关键词:变频器,控制技术,应用 电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其有益的 调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。 1.变频调速技术的现状 电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。 国外现状 采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定: 市场有大量需求 随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。 功率器件发展迅速 变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(Intelligent Power Module)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交—交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。在大功率无换向器电机变频调速技术方面,意大利ABB公司提供了单机容量为60000kW的设备用于抽水蓄能电站;在中功率变频调速技术方面,德国西门子公司Simovert A电流型晶闸管变频调速设备单机容量为10-2600kVA和Simovert PGTOPWM变频调速设备单机容量为100-900kVA,其控制系统已实现全数字化,用于电机风车,风机,水泵传动;在小功率变频调速技术方面,日本富士BJT变频器最大单机容量可达700kVA,IGBT变频器已形成系列产品,其控制系统也已实现全数字化。 IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及外围的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。 控制理论和微电子技术的支持 在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础;16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。 国内现状 从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。 进入90年代,随着高性能单片机和数字信号处理的使用,国内学者紧跟国外最新控制策略,针对交流电机感应特点,采用高次谐波注入SPWM和空间磁通矢量PWM等方法,控制算法采用模糊控制,神经网络理论对感应电机转子电阻、磁链和转矩进行在线观测,在实现无速度传感器交流变频调速系统的研究上作了有益的基础研究。在新型电力电子器件应用方面,由于GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的变流主电路大大简化,大功率SCR,GTO,IG-BT,IGCT等器件的并联、串联技术应用,使高电压、大电流变频器产品的生产及应用成为现实。在控制器件方面,实现了从16位单片机到32位DSP的应用。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。 因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。 2.变频调速技术未来发展的方向 变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”;二是向变频器应用的深度和广度发展。随着变流器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制;(2)开发清洁电能的变流器;(3)缩小装置的尺寸;(4)高速度的数字控制;(5)模拟与计算机辅助设计(CAD)技术。论文检测。 3变频调速技术的应用 纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。论文检测。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有 经验 表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。 有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450。2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25。论文检测。69亿千瓦小时;冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4。9倍,印度1。9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。 参考文献 [1]何庆华,陈道兵. 变频器常见故障的处理及日常维护[J]. 变频器世界, 2009, (04) . [2]龙卓珉,罗雪莲. 矩阵式变频调速系统抗干扰设计[J]. 变频器世界, 2009, (04) . 猜你喜欢: 1. 电气类科技论文 2. 电子应用技术论文 3. 电气控制与plc应用技术论文 4. 变频器应用技术论文 5. 变电运行技术论文 6. 光伏应用技术论文

198 评论

魔王夫人

离心泵技术论文篇二 离心泵的管理和维修技术探讨 摘要:离心泵是机械装备制造业中比较通用的一种机械,广泛应用于社会生产的各个行业和部门。近年来,伴随着石油化工和国民经济的发展,对离心泵的安全可靠性能提出了更为严格的要求。离心泵作为输送物料的一种转动设备,对连续性较强的化工生产尤为重要。基于此,本文就离心泵的管理和维修技术展开分析与研究。 关键词:离心泵;管理;维修 中图分类号:C93文献标识码: A 引言 随着社会经济的快速发展及企业管理体制的不断改革,离心泵故障管理及维护受到了越来越多人们的关注,在我国现阶段,寻找离心泵馆长的维修技术已经成为一个新的课题,对离心泵进行良好的日常保养,完善设备的保养机制,是延长离心泵使用寿命的关键。 一、离心泵的基本构造 (一)叶轮。常见的离心泵结构中,主要有开式、半开式和闭式三种型式的叶轮。开式叶轮仅有叶片,没有前后盖板;半开式类型的叶轮则是由后盖板和叶片组成;而闭式叶轮不但有叶片,还有前盖板和后盖板。在各泵体结构中,离心泵主要通过叶轮对液体做功,也是唯一的做功部件。 (二)泵体。径向剖分式和轴向剖分式是两种普遍的离心泵壳体类型。离心泵中的单机泵壳体大多数为蜗壳式,多级泵壳体按径向剖分壳体划分成圆形和环形两种壳体类型。泵壳内腔呈现螺旋形是蜗壳式泵壳的主要特征。 (三)泵轴。泵轴主要是用来传递机械能,它是由联轴器和电动机相连,从而可以将电动机的转矩通过泵轴传送到叶轮。 (四)轴承。离心泵的轴承多为滑动轴承,所以润滑剂要求就比较严格,常用透明油作为润滑剂。 (五)密封环。减漏环是密封环的另一种说法,在不同资料下可能显示有所不同。 (六)填料函。填料函的主要作用是封闭泵轴和泵壳之间的狭小空隙,保证泵内水流和泵外空气不能相互泄露。主要构造是由填料、填料筒、填料压盖、水封环和水封管组成。 二、离心泵的基本工作原理 研究离心泵工作原理可为处理故障与制定预防措施提供技术依据。在通常情况下,离心泵就是利用物体离心力作用,来达到对液体物体完成输送的目的。在离心泵工作前,须事先将泵内叶片间和贮液槽内充灌满流体,然后再启动离心泵开始正常运转,此时离心泵内的流体就会随着叶轮高速旋转产生离心力运动,并在叶轮中心向外周作径向运动,最后顺叶片流道进入到排出管内。同时泵内的原有流体被旋转甩出后,叶轮中心即形成了一个低压区,而暂处于高压区贮液槽的流体就会源源不断的被吸收到叶轮中心,再依靠叶轮高速旋转被甩出进入到排出管内,形成流体不间断的被吸入和排出的循环输送作业,从而实现离心泵连续不断地将液态物体抽出进行输送 三、离心泵常见故障处理措施 (一)离心泵排液不畅和排液后中断的解决措施 检查泵内气体是否处于真空状态,泵壳和入口管线内的流体是否全部注满,如果不是真空要立即排净空气,没有灌注满的要及时重新添加达到要求标准。检查泵内叶轮转速有无异常,发现叶轮表现出过低的转速时,要立即进行调整适当提速。检查入口滤网、底阀有无附着的杂物,有就须立即排除异物,避免再次发生堵塞;检查吸入侧管道连接处有无漏气,有就需及时排尽气体,检查吸入口淹埋深度是否太浅,调整合适位置避免异物堵上。 (二)离心泵运行中出现震动或异响的解决措施 检查离心泵的轴承情况及间隙大小,检查泵内油质清洁度和润滑程度,并进行逐一排除故障隐患。损坏轴承要及时进行更换处理,间距大的了要及时调整轴距到适当的位置;对已经污染了的油质要马上进行杂质清除,对润滑不到位的部件,要立即更换新的润滑油脂。至于对那些过高震动频率的,则应及时更换、调整离心泵的轴承、轮齿等部位。 (三)离心泵功率消耗太大的解决措施 检查叶轮与耐磨环、泵壳有无摩擦,而进行适度的修理。检查流液密度是否合适,轴承有无损坏,如果有就及时进行修理或者更换轴承,调整零部件。检查泵轴是否有弯曲,并及时矫正。检查联轴器是否存在对中不良、轴向间隙太小,进而调整对中和轴向间隙到合适位置。 (四)水泵不能正常运转的解决措施 首先,检查离心泵的原动机运行有无异常,电源接入是否正确,如存在有原动机异常和电源接错的问题,须加以整改处理好;也可用手盘联轴器直接检测,如遇故障问题严重的,可通过拆解泵壳,观察泵体内有无被卡的现象。检查泵内系统的水头、净压头等部件磨损情况,对凡是发现有磨损的零部件应及时更换。检查叶轮的完好程度及叶轮之间的间隙,及时更换掉完好程度差的损坏叶轮,调整间隙大的叶轮间隙到合适的位置为止。检查吸液槽的真空状态与吸入的高度位置,对没有排尽空气的要再排气,使吸液槽内达到真空状态,同时,对泵内系统的水头位置设置过高的,要重新调整。 (五)离心泵流量不足,扬程不达标的解决措施 导致离心泵的流量和扬程不够的主要原因为:叶轮的转速太低或叶轮的转动方向不对、泵吸入口串气、吸入口管线、滤网或叶轮堵塞、灌注不够、叶轮损坏、口环的间隙过大,漏损过大、吸入管中压力接近汽化压力、泵体内有气体。如离心泵在出现如下情况时,可采取下面的方法进行处理:①检查调整。②检查入口管线法兰。③清理入口过滤器。④更换叶轮。⑤增加入口压力,提高灌注头。⑥更换口环。⑦适当地增加入口压力,同时降低传输介质的温度。⑧放空排气或向有关系统卸压。 四、离心泵的管理和维护的优化策略 现代工业系统中,离心泵的适用范围从基本的生活需求到石油化工行业都有广泛涉及,不但用来输送水,而且还用来输送石油等其他不同性质的液体。按照不同的输送媒介,离心泵的种类也变得纷繁复杂,常见的有防腐泵和清水泵两种。为了保证一定的使用年限,减少企业成本提高经济效益,就必须不定期对离心泵加强管理和维护。 (一)做好离心泵安装工作,确保正常运行。离心泵是石油化工生产中的核心装置,其重要性不言而喻。而离心泵安装工作是前提和基础部分,要求安装工作人员一定要严格按照规范要求,确保设备的科学安装和正常运行。首先,设备的基础尺寸和位置一定要符合要求,横纵坐标的位置一定要合理,一般偏差不能超过20mm,地脚螺栓孔中心位置的偏差应该控制在10mm以内,地脚螺栓孔壁铅的垂直角度偏差应该在2毅。其次,安装中,一定要慎重选择垫铁的位置,在垫铁安装之前,一定要调整泵的标高、水平度,使其达到设计的标准值。只有精准的安全,才能确保离心泵运行的稳定性和安全性,垫铁的主要作用是使泵的重量以及运转过程中产生的惯性力均匀地传递给基础部分,这样能减少离心泵自身承载的荷重,确保其能长久运行。最后,离心泵安装中,需要安装两个垫铁,其中一平二斜,固定离心泵,如果一般离心泵的荷载比较大,可以选用三个垫铁,但是,数量最好不要超过三个。离心泵的安装是系统性的工作,对安装技术人员提出较高的要求,技术人员一定要注重每一个安装细节,确保每一个环节的工作质量,这样更能提高运行的可靠性,保证离心泵工作运行的效率。 (二)合理使用离心泵,提高运行效率。合理使用离心泵要求技术人员严格按照规范操作开展工作,避免离心泵低流量运行。一般离心泵在正常运行时,高压力下顺利运行,但是如果出现低流量运行,会导致离心泵故障问题。低流量运行时,离心泵内就会出现径向漩涡现象,此时就会产生很大的径向推动力,此时,离心泵就无法正常运转。石油离心泵的实际流量比较小,如果处于不合理连续转动运行中,就会导致轴折断。但是,一般离心泵的流量都比较低,很多时候能将大部分轴功率转化为热能,将能量传递给泵内的液体,进而引起整个外壳温度上升,此时,泵体温度升高,在长期小流量运行状态下,就会发生震动等故障现象。因此,一定要避免离心泵在低流量状态下运行,这样才能保证离心泵的正常工作,提高运行效率。其次,还应该做好离心泵润滑工作,基本都是滚轴承类型,润滑剂的养护和使用能确保离心泵的正常运行,在不受外界干扰的情况下,保证机械不会因为负荷力而变形。润滑工作也是重要的环节,一定要使润滑达到良好的状态。在选用润滑油时,一定要慎重选择比较良好的润滑油,在不同转速的情况下,应该形成油膜,这样更有助于提高离心泵的安全运行。同时,选用的润滑油应该具有高粘度性,离心泵在不同的条件下,都能有效的保护其使用寿命,确保离心泵不会受到负荷力以及温度等因素的影响,进而确保离心泵内部部件的顺利运行,避免离心泵在运行过程中轴和固定轴之间的摩擦,减少离心泵故障问题。 结束语 随着科技的不断发展,,离心泵的管理和维护对技术人员的业务水平提出了更高的要求,因此,企业各部门的操作人员必须加强理论知识的学习,并在实际工作中熟练运用。只有对离心泵的管理和维护工作充分重视,才能够保证其利用率、可靠性和安全性得到大幅度提高。 参考文献: [1]刘福玉,刘福磊,孙广军,张凤霞.探讨多级离心泵常见故障检测与维修[J].才智,2012,20:36. [2]席玉洁.离心泵故障诊断专家系统的应用研究[D].北京化工大学,2011. [3]陈来保,潘金亮,焦红志,李京沛.高速离心泵常见故障原因分析及处理[J].河南化工,2008,08:38-39. [4]朱力勇.离心泵常见故障分析与处理[J].中国石油和化工标准与质量,2013,17:79. [5]白俊华.离心泵常见故障原因及预防措施[J].现代农业科技,2011,03:265-266. 看了“离心泵技术论文”的人还看: 1. 变频泵技术论文 2. 泵与风机节能技术论文 3. 变频技术论文2000字 4. 节电技术论文 5. 变频器技术论文

169 评论

小轩3636

1 引言 供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频能够很好的满足现代供水系统的要求。在变频出现以前,有以下供水方式:(1) 单台恒定转速泵的供水系统这种供水方式是水泵从蓄水池中抽水加压直接送往用户,严重影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价最低,但耗电严重,水压不稳,供水质量极差。(2) 恒定转速泵加水塔(或高位水箱)的供水系统这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量差。(3)恒定转速泵加气压罐的供水系统这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。变频不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。2 供水系统的基本特性供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。图1 供水系统的基本特性3 变频恒压供水系统的构成及工作原理 系统的构成变频恒压供水系统采用西门子的plc作为控制器,变频器mm440是频率调节器,和电动机作为执行机构,压力传感器作为控制的反馈元件。plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。与mm440的电源输入口连接,经过变频器变频后的交流电接,带动水泵转动。s7-200数字输出口输出控制信号到,两端连接的是工频或变频的,主要起接通或断开与。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。图2 变频恒压供水系统的总体框图 系统的工作原理变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。的转速为:其中: n0为同步转速;n为转子转速;f为异步电机的定子输入交流电的频率;s为异步电机的转差率;p为异步电机的极对数。由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,精确跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到最大频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统最终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误差在5%内);可以自动进行自动模式/手动模式切换。系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的,其设计是按照两个电机就可以完全满足供水要求。图3 变频恒压供水系统的控制原理框图4 硬件 主电路变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。图4 系统主电路图 控制电路控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,sb0为plc的程序启动按钮,与plc的输入口相连接,当按下sb0时,为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。和的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。图5 plc外围接线图5 程序设计 plc程序设计plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮sb0,plc程序复位。当合上开关k1,为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。图6 主程序流程图当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到。此时,为“0”, 为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由最高频率50hz逐渐下降,3s后为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到。此时,为“0”,km2断开,2#电机退出变频并逐渐停止。同时为“1”,为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。 变频器mm440的参数配置变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,最高频率应该设置为50hz,最低频率为30hz。mm440的参数配置如附表所示。附表 mm440的参数配置6 结束语应用西门子plc(s7-200)内部的pid模块和变频器mm440的无极调速控制恒压供水系统,高效节能,调速供水效果突出,抗干扰能力强。同时采用变频器对电机实行软起动,减少了设备损耗,延长了水泵、电机设备的使用寿命。以供水水压为控制对象的闭环控制,稳态误差小,动态响应快,运行稳定。实验效果表明,采用plc(s7-200)和变频器mm440构成的变频恒压供水系统,具有很强的实用性,体现了变频调速恒压供水的技术优势,为供水领域开辟了切实有效的途径。参考文献[1] 李光,谢欢,王直杰. 高压变频器模拟量控制电路及功能设计[j]. 电气传动自动化,2008,38(7):63-68.[2] 彭旭昀. 一种基于变频器pid功能的plc控制恒压供水系统[j]. 机电工程技术,2005,34(10):54-56.[3] 陈新恩,王永祥. 基于s7-200的变频调速恒压供水系统[j]. 制造业电气,2006,25(6):37-39.[4] 朱玉堂. 变频恒压供水系统的研究开发与应用[d]. 杭州:浙江大学,2005.

175 评论

呼啦啦呼嘞嘞

1 引言 供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频恒压供水系统能够很好的满足现代供水系统的要求。在变频恒压供水系统出现以前,有以下供水方式:(1) 单台恒定转速泵的供水系统这种供水方式是水泵从蓄水池中抽水加压直接送往用户,严重影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价最低,但耗电严重,水压不稳,供水质量极差。(2) 恒定转速泵加水塔(或高位水箱)的供水系统这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量差。(3)恒定转速泵加气压罐的供水系统这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。变频恒压供水系统不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,s7-200具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。2 供水系统的基本特性供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。 图1 供水系统的基本特性3 变频恒压供水系统的构成及工作原理 系统的构成变频恒压供水系统采用西门子的s7-200 plc作为控制器,变频器mm440是频率调节器,交流接触器和电动机作为执行机构,压力传感器作为控制的反馈元件。s7-200 plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。三相交流电与mm440的电源输入口连接,经过变频器变频后的交流电接异步电动机,异步电动机带动水泵转动。s7-200数字输出口输出控制信号到交流接触器,交流接触器两端连接的是工频或变频的三相交流电,主要起接通或断开三相交流电与异步电动机。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。 图2 变频恒压供水系统的总体框图 系统的工作原理变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。异步电机的转速为: 其中: n0为异步电机同步转速;n为异步电机转子转速;f为异步电机的定子输入交流电的频率;s为异步电机的转差率;p为异步电机的极对数。由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,精确跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到最大频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统最终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误差在5%内);可以自动进行自动模式/手动模式切换。系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的闭环控制系统,其设计是按照两个电机就可以完全满足供水要求。 图3 变频恒压供水系统的控制原理框图4 硬件电路设计 主电路变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、热继电器kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。 图4 系统主电路图 控制电路控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,sb0为plc的程序启动按钮,与plc的输入口相连接,当按下sb0时,为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。和的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。 图5 plc外围接线图5 程序设计 plc程序设计plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮sb0,plc程序复位。当合上开关k1,为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。 图6 主程序流程图当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到。此时,为“0”, 为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由最高频率50hz逐渐下降,3s后为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到。此时,为“0”,km2断开,2#电机退出变频并逐渐停止。同时为“1”,为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。 变频器mm440的参数配置变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过a/d转换器得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,最高频率应该设置为50hz,最低频率为30hz。mm440的参数配置如附表所示。附表 mm440的参数配置 6 结束语应用西门子plc(s7-200)内部的pid模块和变频器mm440的无极调速控制恒压供水系统,高效节能,调速供水效果突出,抗干扰能力强。同时采用变频器对电机实行软起动,减少了设备损耗,延长了水泵、电机设备的使用寿命。以供水水压为控制对象的闭环控制,稳态误差小,动态响应快,运行稳定。实验效果表明,采用plc(s7-200)和变频器mm440构成的变频恒压供水系统,具有很强的实用性,体现了变频调速恒压供水的技术优势,为供水领域开辟了切实有效的途径。参考文献[1] 李光,谢欢,王直杰. 高压变频器模拟量控制电路及功能设计[j]. 电气传动自动化,2008,38(7):63-68.[2] 彭旭昀. 一种基于变频器pid功能的plc控制恒压供水系统[j]. 机电工程技术,2005,34(10):54-56.[3] 陈新恩,王永祥. 基于s7-200的变频调速恒压供水系统[j]. 制造业电气,2006,25(6):37-39.[4] 朱玉堂. 变频恒压供水系统的研究开发与应用[d]. 杭州:浙江大学,2005.

274 评论

相关问答

  • 水泵设计本科毕业论文

    1 前言:敝公司为流体机械专业工厂,产品有真空泵浦、齿轮泵浦、离心泵浦及柱塞泵浦等,每一项产品皆经严格品管试验,故性能优越,品质稳定。泵浦为流体输送之中心枢纽,

    机器猫TJ 4人参与回答 2023-12-09
  • 十大水泵sci杂志

    sci材料类杂志推荐: 1、JOURNALOFVACUUMSCIENCE&TECHNOLOGYA issn:0734-2101 2018-2019最新影响因子:

    一帆杰作 2人参与回答 2023-12-07
  • 水泵维修论文答辩

    演讲稿是一种实用性比较强的文稿,是为演讲准备的书面材料。在我们平凡的日常里,很多地方都会使用到演讲稿,为了让您在写演讲稿时更加简单方便,以下是我整理的大学生毕业

    ~逛吃逛吃 4人参与回答 2023-12-05
  • 关于宅水轮泵站论文范文资料

    网络工程专业是应用型目录外专业,随着互联网技术的不断发展,网络工程专业越来越受到国家和社会的关注。下面是我为大家整理的网络工程专业毕业论文,供大家参考。 1GI

    weiweivivianweiwei 2人参与回答 2023-12-09
  • 电厂水泵专业的论文题目

    机械工程是一门涉及利用物理定律为机械系统作分析、设计、制造及维修的工程学科。那么机械工程专业的论文题目有哪些呢?下面我给大家带来机械工程专业论文题目_机械类专业

    凌人happy 3人参与回答 2023-12-09