qq1138566105
南开大学金融学本科西方经济学魏埙,蔡继明,刘俊民,柳欣 编著南开大学出版社黑皮开始用的这本,不过这书质量不好条理也不是很清晰后来改用科学出版社出版的紫皮的了考研复习的话还是高鸿业的比较好
人到中年156
数学硕士论文开题报告
导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!
一、数学文化的内涵
数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。
受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。
19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。
他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。
二、数学文化研究的意义
区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。
数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。
数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。
数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。
如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。
数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。
三、数学的文化特征
1.数学的抽象性
在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫()说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”
数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。
2.数学的确定性
数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。
然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”
3.数学的继承性
科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。
从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。
四、提纲
目录
第1章 概述
文化的内涵
文明的内涵
数学文化的内涵
数学文化研究的意义与现状
第2章 数学的文化特征
数学的文化特征
数学的抽象性
数学的确定性
数学的继承性
数学的简洁性
数学的统一性
数学的功能特征
数学的渗透性
数学的传播性
数学的工具性
数学的预见性
数学的艺术特征
数学的艺术性
数学与音乐
数学与美术
数学与文学
第3章 数学与人类文明
数学是人类逻辑能力的来源
数学唤醒人类理性精神
数学促进人类思想解放
数学改善人类生活
数学完善人类品格
数学提高人类文化素质
第4章 数学与社会文明
数学促进社会进步
数学推动知识发展
第5章 我国数学文化与数学教育的研究进展
数学文化与数学教育研究综述
数学文化与数学教育活动进展
第6章 对数学教育的若干思考
数学素养是国民文化素质的重要构成.
数学教育现状
数学文化教育亟需解决的问题与建议
结束语
参考文献
致谢
五、亟需解决的问题与建议
1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。
2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学
六、进度安排
20XX年11月01日-11月07日 论文选题。
20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。
20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。
20XX年12月10日-12月19日 确定并上交开题报告。
20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。
20XX年02月16日-02月20日 完成论文修改工作。
20XX年02月21日-03月20日 定稿、打印、装订。
20XX年03月21日-04月10日 论文答辩。
七、参考文献
[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.
[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.
[3]范森林.中国政治思想的起源[M/OL].
[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.
[5]郑毓信.数学哲学的内容和意义[J/OL].
[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.
[7]顾沛.数学文化[M],北京:高等教育出版社,2008.
[8]南开大学数学文化课程简介.
[9]吉林大学本科生数学文化课程教学大纲--数学文化.
[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.
[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.
[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).
[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.
[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.
[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.
[16]数学地质四川省高校重点实验室.
[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.
晴朗天空85
南开大学(Nankai University, NKU),简称南开[1] ,肇始于1904年,正式成立于1919年,是由严修、张伯苓秉承教育救国理念创办的综合性大学。1937年校园遭侵华日军炸毁,学校南迁,与北京大学、清华大学在湖南长沙合组国立长沙临时大学,1938年迁往云南昆明,长沙临时大学更名为国立西南联合大学 [2] ,为中华民族振兴和国家富强作出了不可磨灭的重要贡献。[3] 1946年回天津复校并改为国立。新中国成立后,经历高等学校院系调整,成为文理并重的全国重点大学。南开大学由中华人民共和国教育部直属,位列国家“211工程”和“985工程”,入选首批“2011计划”、“111计划”、“珠峰计划”、“卓越法律人才教育培养计划”,被誉为“学府北辰”。[4] “渤海之滨,白河之津;汲汲骎骎,月异日新”,南开大学秉承“允公允能、日新月异”之校训,弘扬“爱国敬业、创新乐群”的光荣传统和“文以治国、理以强国、商以富国”的理念,正在向建成世界一流大学的宏伟目标阔步前进。
南开大学金融学本科西方经济学魏埙,蔡继明,刘俊民,柳欣 编著南开大学出版社黑皮开始用的这本,不过这书质量不好条理也不是很清晰后来改用科学出版社出版的紫皮的了考研
只计算正文部分,不包含摘要、前言、致谢。 表达自己的学术成果 要求 有引言正文参考资料等,字数 一般1000以上。论文的主体要求:大学毕业生的文本数量一般应超过
大学本科毕业论文的成绩评定主要由答辩老师的评分和指导老师的评分综合而来。答辩时,至少三位答辩老师会根据论文质量和学生的答辩情况给论文给出一个分数,这几个分数平均
数学专业毕业论文选题方向如下: 1、并行组合数学模型方式研究及初步应用。 2、数学规划在非系统风险投资组合中的应用。 3、金融经济学中的组合数学问题。 4、竞赛
南开大学在职研究生的毕业论文和大多数本科学员经历的论文撰写要求差不多,而且该院校也安排了导师辅导学员的日常生活和论文撰写的相关工作,所以学员不要太过于紧张。在职