杰爱小吃
1、单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内,例如检验一群军校男生的身高的平均是否符合全国标准的170公分界线。
2、独立样本t检验(双样本):其零假设为两个正态分布的总体的均值之差为某实数,例如检验二群人之平均身高是否相等。若两总体的方差是相等的情况下(同质方差),自由度为两样本数相加再减二;若为异方差(总体方差不相等),自由度则为Welch自由度,此情况下有时被称为Welch检验。
3、配对样本t检验(成对样本t检验):检验自同一总体抽出的成对样本间差异是否为零。例如,检测一位病人接受治疗前和治疗后的肿瘤尺寸大小。若治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸将缩小。
4、检验一回归模型的偏回归系数是否显著不为零,即检验解释变量X是否存在对被解释变量Y的解释能力,其检验统计量称之为t-比例(t-ratio)。
由来
学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生 (student)”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈塞受雇于都柏林的健力士酿酒厂担任统计学家。戈塞提出了t检验以降低啤酒重量监控的成本。
戈塞于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈塞真实身份的。
jajahhauqba
t检验方法如下:
t分布的发现使得小样本统计推断成为可能,并且以t分布为基础的检验称为t检验。在医学统计学中,t检验是应用较多的一类假设检验方法。对于计量资料的假设检验中,t检验是最为简单、常用的方法。
单样本资料的t检验,实际上是推断该样本来自的总体均数与已知的某一总体均数μ0(常为理论值或标准值)有无差别。零假设为H0:μ=μ0。而对立假设要视问题的背景而定:双侧的对立假设为H1:μ≠μ0;单侧的对立假设可以是H1:μ>μ0或H1:μ<μ0。
t检验的统计量计算,服从自由度为v=n-1的t分布。因此,可以根据t值来计算相应的P值,进行统计推断的。事先规定一个“小”的概率α作为检验水准,如果P值小于α,就拒绝零假设,如P值不小于α,则不拒绝零假设。
在医学科学研究中的配对设计主要适用于以下情况:第一,异体配对设计,包括同源配对设计和条件相近者配对设计(两同质受试对象配成对子分别接受两种不同的处理)。第二,自身配对设计(同一受试对象分别接受两种不同处理)。
两独立样本配对t检验:
两样本t检验又称成组t检验,或两独立样本t检验,医学研究中常见用于完全随机设计两样本均数的比较,即将受试对象完全随机分配到两个不同处理组,研究者关心的是两样本均数所代表的两总体均数是否不等。
此外,在观察性研究中,独立从两个总体中进行完全随机抽样,获得的两样本均数的比较,也可采用两样本t检验。此检验基于t分布,必须假定两个总体服从正态分布,根据是否符合方差齐性。
sweetmiriam
t检验,主要运用于样本含量较少(一般n<30),总体标准差σ未知的正态分布资料。适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。
医学统计中的常见误区有哪些 医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以
秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言
t检验的适用条件: 1、已知一个总体均数; 2、可得到一个样本均数及该样本标准差; 3、样本来自正态或近似正态总体。 t检验主要用于样本含量较小(例如n < 3
中医妇科学就是要运用中医的基本理论,以整体观念为主导思想,系统地研究妇女生理病理特点和特有疾病的病因、病机、症状、诊断、治疗和预防。下文是我为大家搜集整理的关于
T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n