晨馨1205
文章来自“科学大院”公众号作者:孙烈 吴世磊“美丽的花纹是谁镌刻,为她涂抹颜色,青铜的光芒闪耀着,刹那间将夜空刺破——”这段唱词选自中国原创音乐剧《金沙》,一曲便带我们跨越千年。要问这“青铜的光芒”是如何诞生,它的背后又有哪些故事?请跟我一起回到人类文明的起点——青铜时代。青铜——表里不一的奇珍人类何时知道金属会生锈?应该是从认识铜就开始了,也就是大约公元前9千年左右[1]。经过了5~6千年的经验积累,从大约公元前3~4千年起,全球多个地区陆续冶炼出青铜合金。这种铜与锡,或者铜与锡、铅的合金,与石材相比,兼具较理想的硬度、韧性与浇铸性能,因此适合锻打或铸造成型。青铜制成的器物逐渐取代了石器,成为人类生存与发展的重要物质基础。以青铜冶铸工艺为突出代表的古代金属技术,被看作是“人类从蒙昧到文明的转折点”[2]。考古学家汤姆森 (C. J. Thomsen,1788~1865)最先注意到人类史上材料更替引发的文化演变的现象,并将这个时期命名为“青铜时代”。青铜的主要成分是铜,铜在同时接触空气和水时,常温下就会生锈。古人想让铜不生锈,太难了。铜锡合金同样会生锈,而且以青绿色的锈最为常见,这一现象赋予了它一个色泽鲜明的名号——青铜。杜甫说“恰有青铜三百钱”,这里的“青”只是锈色,可不是铜本来的颜色。也就是说,不论是中国国家博物馆的后母戊鼎(图1),还是希腊国家考古博物馆的宙斯(或波塞冬)塑像(图2),这些艺术品迷人的色泽,其实都来自外表的铜锈。图1 后母戊鼎(图片来源:中国国家博物馆官网)图2 宙斯(或波塞冬)塑像(孙烈摄于希腊国家考古博物馆)当然,金属被氧化,意味着原材料的成分、结构与性能也被改变了,因此生锈通常表现为显著的腐蚀效应(图3)。古希腊人将铜锈视为作品的毁坏,就是这个原因。图3 青铜甗(yǎn)的锈蚀孔洞(苏荣誉 关晓武 孙烈 吴世磊摄于湖南省博物馆)可见,对于“表里不一”的青铜文物来说,保留锈色与减少锈蚀都不可少,真是两难。难在哪里呢?生锈的原理好像并不复杂,但是许多遗存至今的青铜器却提醒了我们另一事实——我们迄今尚不能完全了解或控制铜锡铅合金的氧化反应及其结果。青铜器的成分、杂质与微观结构多种多样,埋藏或存放的环境复杂多变,再经过一千年以上的反应,有时会发生罕见的腐蚀现象,在当今非常先进的实验室中也很难模拟这个过程。下面,我们从青铜的本来面目谈起,再看几个神奇有趣却令人困惑的锈蚀现象。吉金——金光闪闪的青铜真容青铜本身是金色的。按照能带理论铜锡合金对可见光谱的黄光波段有高反射率。而青铜器表面又会得到细致的打磨加工,光线反射到眼中,人就会感受到灿烂的金光。我们今天仍可以看到距今2~3千年前的商周时期的许多举世无双的精美青铜器,其中很大一部分是举行高规格礼仪活动用的鼎(图4)、爵(图5)、钟(图6)、铙(图7)等礼器。这些器物在万众瞩目的“高光时刻”用来代表国家或贵族的身份地位,一个重要原因是它们拥有金光闪耀的外表(图8)。图4 人面方鼎(图片来源:《三湘四水集萃:湖南出土商、西周青铜器展》)图5 兽面纹爵(图片来源:《三湘四水集萃:湖南出土商、西周青铜器展》)图6 曾侯乙编钟(图片来源:湖北省博物馆官网)图7 云纹铙(图片来源:《三湘四水集萃:湖南出土商、西周青铜器展》)图8 复制的甬钟(关晓武摄于中科院自然科学史研究所)古今中外,多数人都喜爱金色。在中国古文献中,“金”常常指的是青铜,而不是黄金。青铜也常被称为“吉金”,“吉”是“吉祥”,也有学者认为是“坚固”之义[3]。用吉金做礼器,自然能够得到广泛的接受与认可。在不生锈的情况下,不同的青铜器颜色会有所差异,原因在于合金的比例。如果逐步提高铜锡合金中铜的含量,由于铜的电子跃迁能低于锡,合金的电子跃迁能随之降低,红光波段的反射率就会提高,于是合金的颜色将由金黄色逐渐变为玫瑰色,直至纯铜的赤红色。因此,纯度很高的铜又被古人称为“赤铜”。中国人两千年前就能够调控合金的比例,并掌握了合金成分、性能和用途之间的关系。《礼记·考工记》记载了铜锡合金“六齐(jì)”的规律,当锡占从1/6到1/2之间的6个不同比例时,青铜可分别用以制作钟鼎、斧子、戈戟等6类不同的器物。一般来说,锡的含量升高,合金的硬度则会增加,延展性变差。虽然从现代合金理论和实践来看,“六齐”的规律并不准确,但放在当时条件下,其科学性还是值得肯定的。借助现代的分析测试手段,研究者发现古代青铜的组分是比较复杂的,有铜锡合金(二元合金)、铜锡铅合金(三元合金)。古人有意将铅加入合金,主要是为了改善合金的浇铸性能。还有一些含砷、锌、锑等元素的青铜合金。三元合金、高合金青铜特别是高铅青铜,是中国青铜器的一大特色[4]。铜锈——五花八门的腐蚀物人们在博物馆看到的青铜器大多是青绿色,其实这主要是铜绿的颜色。铜绿的学名是碱式碳酸铜,化学式为Cu2(OH)2CO3,由铜与空气中的氧气、二氧化碳和水反应生成。实验室制得的纯净铜绿,是一种浅绿色的单斜系结晶纤维状的团状物,或深绿色的粉状物。孔雀石的主要成分是天然铜绿(图9),常与其它含铜矿物共生。在自然环境中,铜生锈的速度不算慢。纽约的自由女神铜像,从最初的黄褐色到通体变绿,也就用了十几年的时间。图9 孔雀石标本(图片来源:加拿大滑铁卢大学地球科学博物馆网站[5])铜绿的英文名不止一个。化学中常用的aerugo来自拉丁文,有被腐蚀的含义。“铜锈般的贪婪”在古罗马诗人贺拉斯(Horac,65 BC - 8 BC)的诗中应该吟诵成“haec animos aerugo et cura peculi”——我们大致可用汉语中的“铜臭(xiù)”一词来作注解。铜绿的另一个写法是Verdigris,最初指的是古希腊青铜的颜色,它原意居然是“希腊的绿色”。在中国古代,铜绿被称作“铜青”。青有深绿色或浅蓝色的意思,比如青草、青山绿水。这个颜色区间可以用cyan表示,相当于汉语的蓝绿色。很多语言都“混淆”了青、蓝、绿的叫法,这是一个有趣的语言学现象。可能因为人们在感官上无法准确区分波长为500nm左右的光。一般认为波长577~492nm之间是绿色,而492~455nm之间则是蓝色。即便现在,有人说自由女神像是绿色的,有人觉得应是蓝绿色,也有人说是绿蓝色,其实都没错。在颜色的日常称谓上,我们不能太苛求。铜青,是锈蚀物,但可不是废物。它很早就被用作矿物颜料了。欧洲人用铜锈作油画的绿色颜料,但时间一长,碱式碳酸铜会分解生成黑色的氧化铜(CuO),画中的绿色也跟着变成棕色了,难怪后来被艺术家们淘汰。中国古人对铜青却有不少妙用,例如把锈刮下来画眉毛,唐代人美其名曰“铜黛”。如果用它在囚徒的眼睛周边纹显眼的刺青,那就叫“黥(qíng)两眼”。从化学性质来说,碱式碳酸铜不溶于冷水,却能在热水中分解,也能被酸溶解生成铜盐。铜锈与人体接触,会发生反应,刺激皮肤或粘膜,表现出弱毒性。人若误食,由于部分铜离子能与酶的氢硫基反应,则可能发生急性或慢性中毒。古人称之为“铜毒”,应该是见识到了它的危害。在古人的观念里,锈也可入药。明代名医李时珍认为,铜青就是铜的精华。他在《本草纲目》中写得很清楚:“生熟铜皆有青,即是铜之精华……铜青则是铜器上绿色者,淘洗用之。”西方人过去也拿铜锈做过药[6],还想到用醋酸腐蚀铜,这比李时珍的方法更容易得到锈。现在几乎没有人专门涂抹或服用绿锈了,不过在农药、杀菌剂和防腐剂中,它还是能派上用场。前面说过,青铜的腐蚀机理是个复杂的科学问题,虽然在某些方面的解释上我们已经取得共识,但分歧也不少。笼统地说,在干燥的大气环境中,易发生表面氧化、硫化等化学腐蚀;在水、潮湿的空气或土壤中,易发生电化学腐蚀;在土壤和海洋环境中,存在生物腐蚀;膜电池、小孔腐蚀、晶间腐蚀和选择性腐蚀等理论常被用来解释其深层原因。迷人的青铜器色彩几乎都来自于表面的铜锈。由于青铜本体合金成分的差异,及其所处环境的不同,铜锈的确有很多种:红色的赤铜矿(Cu2O)、黑色的黑铜矿(CuO)和灰铜矿(Cu2S)、靛蓝色的靛铜矿(CuS)、蓝色的蓝铜矿[2CuCO3·Cu(OH)2]和胆矾(CuSO4·5H2O)、绿色的孔雀石[CuCO3·Cu(OH)2]、灰白色的锡石(SnO2)、白色的氯化亚铜(CuCl)和碳酸铅(PbCO3)等,确实五花八门。青铜器神秘莫测的色泽吸引了众多宋代的金石学家,赵希鹄就是其中的一位。他在鉴赏、把玩那些上古的铜器之余,很认真地总结了多种铜锈颜色的“变化规律”。特别是关于千年锈,他认为:“铜器入土千年,纯青如铺翠……铜器坠水千年,则纯绿色,而莹如玉。未及千年,绿而不莹。”显然,他注意到千年之久的铜锈有特别之处。有些蚀绮丽多彩的锈蚀物,甚至被古人看作是“铜花”或“铜华”。唐代的李贺写下了“凄凄古血生铜花”,认为铜器上能生出红斑绿锈之花(图10),应是古人洒上鲜血的缘故。其实,这只是诗人的想象罢了。图10 青铜耳杯(图片来源:《齐国故城遗址博物馆馆藏青铜器精品》)真实的原因是,铜器处在空气、土壤、水和微生物等环境中,而铜合金与其所处环境中的多种物质发生了长期的反应,形成了层状或点状的腐蚀现象。青铜锈蚀反应的产物究竟有多少,我们仍未搞清楚,但是这些五花八门的矿物颜料在一起,青铜器表面出现靛蓝、墨绿、暗红、黑灰、银白等五彩斑斓的颜色,还是大体可以理解的。锈色——漆古、虎斑纹和菱形纹的面纱青铜器有一个特殊种类——铜镜。其亦可称为青镜、铜片、铜照、铜鉴等,可实用,也可赏玩。用青铜做镜子,容易抛光得到镜面。“铸镜需青铜,青铜易磨拭”这句唐诗点明了铜镜的材质与工艺特点。经过长期埋藏,等到铜镜出土的时候,有的表面光亮如漆,晶莹如玉,被称为漆古(图11)。其中有的漆黑发亮,是黑漆古;有的绿如碧玉,是绿漆古;还有的颜色斑斓,叫做花漆古,都深受收藏家和爱好者的追捧。图11 神人神兽面像镜(图片来源:上海博物馆官网)漆古是黑还是绿,取决于矿化层的颜色、透明度,以及腐蚀变质带的成分和形态。其实,漆古并非铜镜所独有,在一些高锡含量的兵器和工具的表面也有发现。漆古到底是人工所为,还是自然生成?多数学者倾向于自然环境中腐蚀形成的解释。检测表明,铜镜的表面已被腐蚀得完全矿化层。铜镜一般含锡量较高,在长期埋藏中,表面富集的锡在含氧地表渗透水和腐植酸胶体溶液作用下被氧化,然后经历了水解、凝胶析出及脱水的繁复过程,最终形成了非晶态二氧化锡或纳米级微晶[7]。也就是说,相当于大自然用千百年的时间,给铜镜做了复杂而微妙的表面处理。铜镜表面加工细致,各相成分均匀,光线经过微晶的反射与散射,最终呈现出半透光的视觉效果。目前,实验室还不能制备出与文物表面一致的漆古,它的形成机理尚不明确。与漆古相似,虎斑纹也是一种颜色奇特的锈层。这是一种主要发现于古代兵器表面的白色、灰色或黑色的斑状规则纹饰,不可能完全由自然腐蚀形成(图12)。虎斑纹青铜器的本体成分多为高锡的铜锡合金,主要物相有铜-锡金属间化合物、铜锡合金相和二氧化锡。图12 楚公戈(苏荣誉摄于湖南省博物馆)我们知道,锡是一种银白色的金属,而氧化锡(SnO2)多是白色或淡灰色。推想一下,如果青铜器表面被人为附着了锡或锡的氧化物,并“绘制”为规则纹饰,那么整体就会呈现出黄白相间的装饰效果。黄色是青铜本体本身的金黄色,白色源于锡或氧化锡,交相辉映,也会很漂亮。有研究者做了模拟实验,采用人工热镀锡方法,得到了近似于文物表面的效果。虎斑纹青铜器被埋藏之后,灰白色的SnO2层较为稳定,而高锡青铜的区域会在土壤埋藏环境中腐蚀生成类似“漆古”的锈层,颜色也就转变为黑色。不久前,我们用X射线荧光光谱法检测了一件西周时期的虎纹斑戈,发现黑色区域的铜含量明显高于绿色铜锈区域。看来,虎斑纹与“黑漆古”有着异曲同工之妙。如果说漆古与虎斑纹的本质是锈,那么听说有些文物不生锈又是怎么回事呢?举一个最典型的例子——被誉为“天下第一剑”的越王勾践剑,它出土之时保存完好,剑刃明亮、锋利,金黄的青铜本色仍一目了然(图13)。实际上它的表面仍被氧化了,只是锈层很薄而已。不过,一件在地下埋藏了两千多年的金属器,重见天日时光亮如新,这着实让世人赞叹不已。更引人注目的是,剑身满饰非常规则的黑色菱形纹。为了解开这一千古之谜,研究人员于1977年借助静电加速器,利用质子X射线荧光非真空分析技术,检测了该剑不同部位的元素及其含量,推测菱形纹可能是经硫化处理形成的。但是,这种解释的说服力仍很有限。图13 越王勾践剑(图片来源:湖北省博物馆官网)图14 吴王夫差矛(图片来源:湖北省博物馆官网)有意思的是,越王与吴王这两个死对头,居然拥有技术风格非常相近的兵器。1983年,一具制作精良的吴王矛被发掘出土,表面同样都装饰着精美的菱形纹(图14)。这究竟是怎么形成的?大家对此看法不一。有西方学者推测菱形纹就是在埋藏过程中形成的,而不少研究者坚持认为是人工腐蚀的结果。所谓人工腐蚀,就是有意而为之的主动腐蚀处理。有一种可能的方案是,先用天然植物酸或天然酸性盐腐蚀兵器表面,形成花纹,然后上釉封闭,作为保护层。后来,研究者利用一小段菱形纹饰剑残片,想了很多办法做了各种检测:金相、X射线衍射、电子探针-波谱和扫描电子显微镜-能谱-电子背散射衍射等多种技术手段;还做了大量模拟实验:铸造成型法、表面激冷法、表层合金化工艺、擦渗工艺、热浸渗工艺、金属膏剂图层工艺等,这些都是古代工匠可能用的手段。由此可知,此类纹饰的形成原因与“漆古”有相似之处,一些区域的表层为细晶结构,有较好的耐蚀性,保护了细晶区之下的铜剑本体不受腐蚀,而另一些区域氧化腐蚀严重,成为黑色的菱形线条。菱形纹与自然形成的“漆古”不同的是,耐腐蚀的细晶层是人为形成的。古代高明的匠人可能先用含高锡合金粉末的膏剂涂抹兵器表面,接着刻划纹饰,然后入炉加热,最后做抛光处理。两千年前匠师的本领也许真有这么强,或许古锈的神秘面纱还远未揭开。腐蚀or不腐蚀——是个问题腐蚀对青铜器文物来说,不能笼统地说好还是坏。文物上有些腐蚀被称为“青铜病”,轻则使腐蚀区域不断扩展,重则形成穿孔甚至毁掉整件器物(图15),对青铜文物器构成极大的危害。这种病由一种绿色粉状的锈蚀产物——碱式氯化铜[Cu2(OH)3Cl] 引起,潮湿的环境、溶解的氯离子以及氧化性气氛是主要病因。粉状锈更易吸潮,导致疾患扩大,让它表现出一定的“传染性”。治疗青铜病的方法大致有四种:物理清除或转化、化学清除或转化、缓蚀剂保护与控制存放环境。图15 患有青铜病的环(图片来源:《艺术品中的铜和青铜:腐蚀产物、颜料、保护》)另有一些腐蚀,在青铜器上形成了致密的屏障,能够降低腐蚀速率,相当于给文物穿上了防护衣。漆古就是如此。它不光是好看,还能保护内部的金属本体免遭进一步侵蚀。因此,拥有漆古层的文物才能在地下埋藏上千年而不腐。虎斑纹、菱形纹的形成机理也类似,同样能够起到抑制腐蚀、保护金属本体的作用。至于越王勾践剑几乎不锈的解释,有人认为,此剑受漆木剑鞘保护,墓室中多中性积水而含氧甚少,所处环境与外界基本隔绝,这或许才是它历经两千余年而“不锈”的真正原因。人为添加特殊的腐蚀产物,同样可以起到延缓腐蚀或仿旧的效果。方法也有不少,比如用化学试剂腐蚀器物表面,或将矿物颜料在表面烧熔、凝固,也可用电镀法镀上一层银灰色或黑色覆盖物。“做锈”往往是文物贩子造假作坊里的最高机密,他们甚至拿掺杂化学试剂的金属粉末加上动物的大小便或化肥的土壤,涂抹到仿品表面,埋到土里一段时间再“出土”。这些手段都只能搞个似是而非的结果,与经数千年岁月缓慢形成的锈层有天壤之别。这也正是千年古锈的独特之处。应该注意的是,锡和铅在青铜文物的锈蚀与保护中扮演了重要作用。可惜,我们仍然不知道其准确的原理与细致的过程。“漆古”、虎斑纹和菱形纹都跟锡元素有着直接关系,铅元素的影响则更加神秘。也许有人会问,古代的这些东西,除了放在博物馆或拍卖市场,没有多大的用处,值得我们下功夫去研究吗?答案是肯定的。有材料学家对铅电缆埋藏在土壤环境中30年的情况做过研究,希望搞清楚铅及其合金的耐腐蚀性能与腐蚀产物。但对一个普通科研人员来说,持续数十年做一个实验,也许太久了。何不直接用古代的材料呢?前几年,一艘几百年前的沉船被发现,引起了探测暗物质的粒子物理实验室的极大兴趣,船上的铅锭成了科学家过滤背景辐射的绝佳材料[8]。铅-210的半衰期只有22年多一点,几百年后基本都衰变为稳定的铅-206了。再加上海洋隔绝了宇宙线引起的辐射污染,毫不起眼的古代铅锭竟然成为现代科研青睐的低辐射材料。背后的问题是,这些泡在海水中的铅是如何抵抗腐蚀的?如果将它们埋藏更久,比如上千年又会是什么结果呢?最近,我们检测了一批距今约3千年的西周早期墓葬出土的金属薄片。一开始,大家以为这些厚度仅1mm左右的残片应该早就剩下锈渣土了(图16)。然而,测试的结果显示它们是纯锡或不同比例的锡铅合金铸造而成的,真令人大吃一惊。图16 铅锡合金文物残片(张衍摄于中科院自然科学史研究所综合实验室)用金相显微镜和电子显微镜观察薄片的截面,发现锈蚀层极薄,只有20~50μm,绝大部分金属未被腐蚀(图17)。去除表面灰黑色的氧化层后,银白色的金属光泽又见天日(图18)。它们纤薄,展性良好,莫氏硬度在1-3之间,材料性能基本如初,真是历久弥新。历经数千年而不朽的现象,真值得好好研究一番。图17 合金残片截面SEM背散射图像(边缘深色区为锈层)(中科院自然科学史研究所综合实验室)图18打磨表面后的锡铅合金残片(吴世磊摄于中科院自然科学史研究所综合实验室)千年锈色耐人寻,千年谜题待人解青铜器拥有古雅的色调和精美的造型,以高超的技艺制成,这些是古人就知道的。在今天,我们更想破解隐含其中的科学之谜。如何从闪亮的吉金过渡到斑斓的青铜?自然形成的漆古和人工制成的菱形纹、虎斑纹有何联系?“青铜病”到底如何防治?千年的薄片为何不朽?这些问题的答案,不仅能够满足我们追求真知的好奇心,同样也具有对现实的借鉴意义。青铜腐蚀,其成分与形态逐渐从有序变为无序,这在大自然中是一个熵增加的过程。然而,五花八门的锈蚀现象说明,青铜文物通过不断地与外界环境交换物质和能量,能够产生自组织现象,形成新的、相对稳定的有序结构。耗散结构的视角,让我们对青铜合金的腐蚀现象有了更多的理解,也有了更多的期待。参考文献:[1]Rayner W. Hesse (2007). Jewelrymaking through History: an Encyclopedia. Greenwood Publishing Group. p. 56.[2]华觉明. 中国古代金属技术——铜和铁造就的文明[M]. 郑州:大象出版社,1999:2.[3]刘硕. “吉金”考[M]//杜泽逊. 国学季刊第二期. 济南:山东人民出版社,2016:94-100.[4]苏荣誉,华觉明,李克敏,等. 中国上古金属技术[M]. 济南:山东科学技术出版社,1995:274.[5][6][7]孙淑云. “漆古”是自然形成?还是人工所为?[M]//孙淑云. 攻金集——孙淑云冶金技术史论文选. 北京:科学出版社,2015:319-334.[8]Nosengo, N. (2010). Roman ingots to shield particle detector. Nature, April, 24.作者单位:中国科学院自然科学史研究所文章首发于科学大院,转载请联系科学大院是中科院官方科普微平台,由中科院科学传播局主办、中国科普博览团队运营,致力于最新科研成果的深度解读、社会热点事件的科学发声。
mon也是部长
当铜生锈染上“铜绿”后从现代卫生学有关铜与“铜绿”的研究成果发现在科学和医学日渐进步的今天,坚持铜和“铜绿”的有毒性必将被全面地改正,“铜绿”是大气中的二氧化硫(SO2)、二氧化碳(CO2)和硫化氢(H2S)与铜的氧化物在铜表面形成的复盐,主要成分是碱式硫酸铜和碱式碳酸铜呈绿色,是铜基体表面致密的保护膜,而水中SO2、CO2和O2的含量极少,且铜的标准电位>=比氢和绝大多数金属都正得多,不会被水中的氢离子置换,所以铜管内壁很难产生“铜绿”。如:在比较铜和“铜绿”的溶出实验过程中,把等量的纯铜和覆盖着“铜绿”的铜放进水里,随着水温上升后者溶介出的铜明显要比前者少,“铜绿”不溶于水;在对“铜绿”以及其他铜类复盐的长期动物实验中,发现它们并没有可怕的剧毒,与其他金属相比较也没有特别的有害之处:铜绿紧密地附着在铜表面,它不溶于冷热水,具有极高的稳定性。日本科学家研究证明,即使将铜绿碾成粉末注入人体内,人体也不会吸收,人体会通过自然反应,将其排出体外。
清晨依恋静雪
病原菌进入宿主后面临多重挑战,调整基因表达来响应环境变化对于细菌在宿主体内的生存至关重要。哺乳动物宿主的体温通常为37°C左右,是细菌毒力基因表达实现成功定植的关键信号[1]。前期的研究发现将近400个基因在温度变化时(28°C vs 37°C)显示差异表达,其中包括三型分泌系统相关基因。三型分泌系统(Type III Secretion System, T3SS)是革兰氏阴性菌的一个由多组分蛋白复合体形成的跨膜通道,它通过分泌蛋白,或把这些毒力蛋白直接注入宿主细胞中发挥致病作用[2]。 三型分泌系统高度耗能,因此其表达受到严格调控,但具体调控机制尚不十分明确。
近日,南开大学 吴卫辉教授 课题组在 Nucleic Acid Research (IF=) 上发表题为 Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation of exsA in Pseudomonas aeruginosa 的研究论文, 揭示了铜绿假单胞菌CspA家族蛋白CspC通过与exsA mRNA的5'UTR结合调控exsA的翻译。环境温度变化时,CspC乙酰化修饰增多影响其对核酸的结合能力,从而影响对exsA的翻译作用。 景杰生物为该研究提供了基于 LC-MS/MS的乙酰化修饰组学分析 和乙酰化泛抗体(PTM-101)。
CspA属于冷休克蛋白家族,可与mRNA结合参与调控多种生物学过程及响应环境变化。铜绿假单胞菌野生型菌株PA14含有五个CspA同源基因,分别为PA0456 (CspC) , PA0961, PA1159, PA2622 (cspD)和PA3266 (capB), 它们都受到温度变化的调节。作者发现 CspC的突变可增加肺部感染,且其毒力的增强与细菌的生长速度关系不大。 接下来,作者探究了CspC的突变后细菌的毒力增强的原因。作者比较了突变体和野生型菌株的转录组, 共发现174个差异基因。其中,所有T3SS基因在cspC突变体中表达都升高。 同时,这一结果也在蛋白水平上得到一致的映证。这些结果表明 CspC对T3SS基因有负调控作用。
图 PA0456(CspC)的突变增加了小鼠急性肺炎感染时的细菌毒力
ExsA/C是T3SS的关键基因,CspC调控exsC启动子的活性,但不调控exsA启动子的活性。为了探究CspC对exsA的调节机制,作者在野生型菌株PA14中过表达C端带GST标前的CspC(CspC-GST)或单独的GST蛋白,并进行RIP-seq分析。结果显示, exsA mRNA及其5 'UTR被 CspC-GST显著富集,表明CspC可能在转录后水平对exsA进行调节。 随后,作者构建了Ptac-5’UTR-exsA-FLAG载体,通过不断缩短5’ UTR长度和观测表达量,最终将关键调控区域缩小到74 nt序列。
图 CspC 在转录后水平控制exsA的表达
利用Ptac-74 nt-exsA-FLAG,作者发现野生型PA14在37°C时的ExsA的蛋白水平比在25°C时高倍。在cspC突变体中,exsA的蛋白水平分别比野生型PA14在25°C和37°C时高倍和倍,表明CspC在25°C时对exsA的翻译抑制作用更强。然而,CspC的转录和蛋白水平在两个温度下相差不大,暗示着差异可能由蛋白翻译后修饰引起。通过 LC-MS/MS分析 ,作者发现CspC的K41位有乙酰化修饰,且这种修饰的丰度在37°C中高于25°C(从25°C到37°C,模拟细菌由环境中进入哺乳动物宿主体内)。
图 CspC蛋白K41存在乙酰化修饰
为了探究K41乙酰化是否影响了CspC功能,作者构建了cspC的K41Q和K41R突变体版本,分别用于模拟乙酰化和未乙酰化状态。结果显示K41R CspC-74 nt ssDNA的亲和力比 K41Q CspC-74 nt ssDNA的亲和力约高10倍。过表达K41R cspC降低exsA、exsC和pcrV的mRNA水平,而过表达K41Q cspC 则不影响它们的表达。随后,作者使用Ptac-74-exsA-FLAG检测了cspC突变体对exsA翻译的影响。与野生型cspC相比,cspC K41Q突变后不能抑制exsA-FLAG的翻译,而K41R cspC可抑制exsA-FLAG 的产生,并导致在25°C和37°C下的exsA蛋白水平相当,即 造成了对exsA翻译的组成性抑制。
图 CspC K41乙酰化调控 exsA 翻译
为了确认这种机制是否调控体内感染,作者用CspC天然启动子驱动的cspC-GST的突变体感染小鼠。与细胞实验相比,在从受感染小鼠中分离的CspC有更高水平的乙酰化。与cspC突变体相比,感染表达cspC (K41R) 的cspC突变体导致宿主细菌载量和宿主炎症反应降低。然而,cspC (K41Q) 不影响cspC突变体的细菌载量或宿主炎症反应。 这些结果表明CspC在动物体内的活性受K41乙酰化的影响。
图 CspC K41位点突变影响CspC在体内的功能
综上所述, 该研究确定了CspC的调控目标,并揭示了CspC响应宿主体内环境变化的调控机制。 CspC进入宿主后乙酰化修饰丰度增加,减弱了CspC对于三型分泌系统基因的翻译抑制作用,进而增强了铜绿假单胞菌的毒力。
devilyu2266
铜绿是一种有毒的铜盐,人体吸收后毒性表现为抑制酶活性需要的巯基,抑制红细胞葡萄糖6磷酸脱氢酶(G-6-PD)的活性,降低谷胱甘肽还原酶的活性。损伤细胞膜,使细胞及细胞器因而受损,表现为溶血、少尿、休克、中枢神经抑制,重者死亡铜及其化合物虽然不象某些其它的金属,如铅和汞那样对人体有毒害作用。眼镜金属框上出现的铜绿,也会造成皮肤过敏现象。 此外,铜绿的主要损伤器官为肝,摄入过多引起肝细胞浊肿、坏死等中医认为铜绿有小毒,入肝胆经,这和上面所说的药理实验损伤肝细胞相吻合。体弱血虚者忌服。多量可引起剧烈呕吐、腹痛、血痢、痉挛等证,严重的可致虚脱其他配伍无禁忌 有的是找的,有的是看了总结的能复制的都上去了 有论文专门讲铜绿问题的,可惜不在学校,外面要给钱才能下
无敌幸运星1
每次看到造型或粗犷大气或精致华美的青铜器,特别是它们身上那斑驳的蓝绿色,就仿佛迈入了那历史长河。这种独特的色彩和超越时光的魅力,其实源于铜绿。 铜制器长期暴露在大气下,其表面颜色会经历红色———暗红色———棕色———蓝绿色的变化过程,约30年后,其表面就会被铜绿所覆盖。铜绿就是人们俗称的铜锈,主要成分为碱式碳酸铜,其实它虽然是锈的一种,但不像铁锈那样会不断侵蚀铁的内部,相反地,铜绿是铜器的“保护神”。这不但有金属腐蚀保护理论为依据,也为千百年实践所证明。许多发掘的历史遗迹中,在绝大部分历史痕迹都已灰飞烟灭的同时,铜器依然保存完好。因此,室外铜工艺品、铜导线、铜管路、食品储藏装置等往往不需要专门的保护。 过去,人们对铜绿了解不多,甚至有人认为它是有毒的。其实,饮料和食物是安全还是危险往往取决于量的多少。正如美酒被称为“万药之王”,沉溺其中却绝对有害。铜绿的性能其实非常稳定,根据日本东京大学医学部教授丰穿行平的“铜的卫生学报告”,铜绿不溶于冷水和热水,所以进入体内也不会被吸收。铜壶、铜锅和铜制盛水容器被使用了几千年,至今尚未收到任何人体健康由此受损的医学报告,就是铜绿无毒也无害的一大明证。
1、氯化铜浓度低时钠会与水反应,现象为芙蓉游响,即钠浮在溶液面上,熔化为一个小球,在溶液表面四处游动,发出嘶嘶的响声,最后消失。生成的氢氧化钠与氯化铜反应生成蓝
1、番茄红素是前列腺病的克星 国内外科学家半个世纪的研究表明:前列腺中番茄红素浓度的减低,使其无法抵御自由基的侵蚀,使前列腺发生裂变和老化,出现病变。 由于人体
1、盐酸小檗碱片从化学分子式来看,应属于强酸弱碱盐,水溶液中呈酸性。盐酸小檗碱片对细菌只有微弱的抑菌作用,但对痢疾杆菌、大肠杆菌引起的肠道感染有效。2、盐酸小檗
体液中的酸性物质和碱性物质主要是组织细胞在物质分解代谢过程中产生的,其中产生最多的是酸性物质,仅小部分为碱性物质。(一)、酸性物质的来源 1 .挥发酸( vol
铜吃多了照样中毒,重金属不容易代谢。