霏霏永远爱来来
中是图片格式导致不能编辑为啥呢?因为很多人写论文都是网上找的素材,有的根本就没有数据,可能只是一张图而已。直接拿来用,肯定是不符合老师要求的。这时候也分两种情况:一种是从图上可以看出源数据的比如有数据标签啊,我们就可以根据这个数值重新做一遍啦。另外一种就是看不出来源数据的(如上右图)很大几率上你是不可能找到源数据出处的。难道这个就死翘翘没得救了么?非也非也,我们可以大致模拟出来,反正图上不需要标注实际数据(who cares?),我们只需要将图表在word中做出来即可,怎么处理?可以参照我以前的一篇头条分享文章——《 如何依葫芦画瓢?论无数据源图表的制作》中的图表可以编辑,但是修改不了源数据如下图所示:一般出现这种情况是由于word并不是'凶案'的第一发生地,即图表可能是在excel或者PPT中完成后复制到word中去的(office三件套很多功能是相通的),这个并不足以造成不可编辑,还有一步就是word文件发生了传递,而源文件却并没有同步传递。何以见得?其实word中可以查看图表的源数据的。Tips:所以碰到这种情况,如果我们是在其他工具里面作图的,最后复制后,我们最好把源文件和目标word文件打包一起传递,这样源数据不至于丢失。虽然不能编辑源数据,但是图表还在,修改格式什么的还是可以做到的。那么,今天的实战案例来了,对下面的图,如何去掉0值标签以及0和8之间的线条以及0对应的点和线, 即达到下面的效果:思路:1.假如我们知道数据从头开始做,这个问题就so easy,我们只需要:1)将前面几个数据留空即可,设置一下显示2)或者将前面几个数据设置为NA#,也能达到一样的效果2.直接在图上改造,我们应该怎么做?制作步骤:去掉0?a.删除数据标签双击定位单个数据标签后,按delete键即可b.自定义格式这招独辟蹊径,我们这里只是要不显示0而已,如果我懒得一个个点击删除,我可以一次性设置。将数据标签设置自定义格式为0;0;这个设置的意思是正、负数正常显示,不显示0值,关于自定义格式不属于我们这里要展开的知识点,大家可以私底下去复习了解一下这个机理。c.设置0的标签值字体颜色为背景白色去掉数据标记和线条?这里我们用的方法就是设置色彩为无或者不显示,原理很简单,大家直接看图。操作的诀窍就是双击选中某个点,然后设置线条为无以及标记点为无即可(也可以设置颜色为白色背景色,欺眼睛假装它不存在),每个点影响其本身的数据标记符号以及前面的一小段线的控制范围
盖碗茶136
统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。
jarvinia奈奈
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
guoqingyi828
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。
根据学术堂的了解,在动手书写学位SCI医学论文之前,首先要在头脑里详细构思SCI医学论文的整体结构,多参考其他的SCI医学论文的写法,列出详细的提纲,并尽可能的
根据学术堂的了解,在动手书写学位SCI医学论文之前,首先要在头脑里详细构思SCI医学论文的整体结构,多参考其他的SCI医学论文的写法,列出详细的提纲,并尽可能的
登录需要编辑的文档,点击插入然后点击“图表”,如图所示然后这里可以选择相应的图表类型,这里以柱状图为例然后弹出对应图表的excel文档,编辑相应的参数如图所示,
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进
针对研究目的,对自己的研究结果进行说明和解释,重点说明该项研究的创造性、先进性及其在实践中的意义。与国内外相关研究的结果进行比较,分析其异同点及可能的原因,对自