• 回答数

    5

  • 浏览数

    333

小鱼qt1988
首页 > 医学论文 > 药学数据挖掘论文范文

5个回答 默认排序
  • 默认排序
  • 按时间排序

画布大小

已采纳

摘要:随着网络、数据库技术的迅速发畏以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。 关键词:数据挖掘;知识;分析;市场营销;金融投资 随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。由此,数据挖掘技术应运而生。下面,本文对数据技术及其应用作一简单介绍。一、数据挖掘定义数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。简而言之,数据挖掘其实是一类深层次的数据分析方法。从这个角度数据挖掘也可以描述为:按企业制定的业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性,并进一步将其模型化的先进有效的方法。二、数据挖掘技术数据挖掘技术是人们长期对数据库技术进行研究和开发的结果,代写论文其中数据仓库技术的发展与数据挖掘有着密切的关系。大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖掘库或数据集市中,因为数据仓库会对数据进行清理,并会解决数据的不一致问题,这会给数据挖掘带来很多好处。此外数据挖掘还利用了人工智能(AI)和统计分析的进步所带来的好处,这两门学科都致力于模式发现和预测。数据库、人工智能和数理统计是数据挖掘技术的三大支柱。由于数据挖掘所发现的知识的不同,其所利用的技术也有所不同。1.广义知识。指类别特征的概括性描述知识。根据数据的微观特性发现其表征的、带有普遍性的、较高层次概念的、中观和宏观的知识,反映同类事物的共同性质,是对数据的概括、精炼和抽象。广义知识的发现方法和实现技术有很多,如数据立方体、面向屙性的归约等。数据立方体的基本思想是实现某些常用的代价较高的聚集函数的计算,诸如计数、求和、平均、最大值等,并将这些实现视图储存在多维数据库中。而面向属性的归约是以类SQL语言来表示数据挖掘查询,收集数据库中的相关数据集,然后在相关数据集上应用一系列数据推广技术进行数据推广,包括属性删除、概念树提升、属性阈值控制、计数及其他聚集函数传播等。2.关联知识。它反映一个事件和其他事件之间依赖或关联的知识。如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。最为著名的关联规则发现方法是Apriori算法和FP—Growth算法。关联规则的发现可分为两步:第一步是迭代识别所有的频繁项目集,要求频繁项目集的支持率不低于用户设定的最低值;第二步是从频繁项目集中构造可信度不低于用户设定的最低值的规则。识别或发现所有频繁项目集是关联规则发现算法的核心,也是计算量最大的部分。3.分类知识。它反映同类事物共同性质的特征型知识和不同事物之间的差异型特征知识。分类方法有决策树、朴素贝叶斯、神经网络、遗传算法、粗糙集方法、模糊集方法、线性回归和K—Means划分等。其中最为典型的分类方法是决策树。它是从实例集中构造决策树,是一种有指导的学习方法。该方法先根据训练子集形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练子集中,重复该过程一直到形成正确的决策集。最终结果是一棵树,其叶结点是类名,中间结点是带有分枝的屙性,该分枝对应该屙性的某一可能值。4.预测型知识。它根据时间序列型数据,由历史的和当前的数据去推测未来的数据,也可以认为是以时间为关键属性的关联知识。目前,时间序列预测方法有经典的统计方法、神经网络和机器学习等。1968年BoX和Jenkins提出了一套比较完善的时间序列建模理论和分析方法,这些经典的数学方法通过建立随机模型,进行时间序列的预测。由于大量的时间序列是非平稳的,其特征参数和数据分布随着时间的推移而发生变化。因此,仅仅通过对某段历史数据的训练,建立单一的神经网络预测模型,还无法完成准确的预测任务。为此,人们提出了基于统计学和基于精确性的再训练方法,当发现现存预测模型不再适用于当前数据时,对模型重新训练,获得新的权重参数,建立新的模型。5.偏差型知识。它是对差异和极端特例的描述,揭示事物偏离常规的异常现象,如标准类外的特例、数据聚类外的离群值等。所有这些知识都可以在不同的概念层次上被发现,并随着概念层次的提升,从微观到中观、到宏观,以满足不同用户不同层次决策的需要。三、数据挖掘流程数据挖掘是指一个完整的过程,该过程从大型数据库中挖掘先前未知的、有效的、可实用的信息,代写毕业论文并使用这些信息做出决策或丰富知识。数据挖掘的基本过程和主要步骤如下:过程中各步骤的大体内容如下:1.确定业务对象,清晰地定义出业务问题。认清数据挖掘的目的是数据挖掘的重要一步,挖掘的最后结构不可预测,但要探索的问题应该是有预见的,为了数据挖掘而挖掘则带有盲目性,是不会成功的。2.数据准备。(1)数据选择。搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据。(2)数据预处理。研究数据的质量,进行数据的集成、变换、归约、压缩等.为进一步的分析作准备,并确定将要进行的挖掘操作的类型。(3)数据转换。将数据转换成一个分析模型,这个分析模型是针对挖掘算法建立的,这是数据挖掘成功的关键。3.数据挖掘。对所得到的经过转换的数据进行挖掘。除了完善和选择合适的挖掘算法外,其余一切工作都能自动地完成。4.结果分析。解释并评估结果。其使用的分析方法一般应视挖掘操作而定,通常会用到可视化技术。5.知识同化。将分析所得到的知识集成到业务信息系统的组织结构中去。四、数据挖掘的应用数据挖掘技术从一开始就是面向应用的。目前在很多领域,数据挖掘都是一个很时髦的词,尤其是在如银行、电信、保险、交通、零售(如超级市场)等商业领域。1.市场营销。由于管理信息系统和P0S系统在商业尤其是零售业内的普遍使用,特别是条形码技术的使用,从而可以收集到大量关于用户购买情况的数据,并且数据量在不断激增。对市场营销来说,通过数据分析了解客户购物行为的一些特征,对提高竞争力及促进销售是大有帮助的。利用数据挖掘技术通过对用户数据的分析,可以得到关于顾客购买取向和兴趣的信息,从而为商业决策提供了可靠的依据。数据挖掘在营销业上的应用可分为两类:数据库营销(database markerting)和货篮分析(basket analysis)。数据库营销的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客,以便向它们推销产品。通过对已有的顾客数据的辱淅,可以将用户分为不同级别,级别越高,其购买的可能性就越大。货篮分析是分析市场销售数据以识别顾客的购买行为模式,例如:如果A商品被选购,那么B商品被购买的可能性为95%,从而帮助确定商店货架的布局排放以促销某些商品,并且对进货的选择和搭配上也更有目的性。这方面的系统有:Opportunity Ex-plorer,它可用于超市商品销售异常情况的因果分析等,另外IBM公司也开发了识别顾客购买行为模式的一些工具(IntdligentMiner和QUEST中的一部分)。2.金融投资。典型的金融分析领域有投资评估和股票交易市场预测,分析方法一般采用模型预测法(如神经网络或统计回归技术)。代写硕士论文由于金融投资的风险很大,在进行投资决策时,更需要通过对各种投资方向的有关数据进行分析,以选择最佳的投资方向。无论是投资评估还是股票市场预测,都是对事物发展的一种预测,而且是建立在对数据的分析基础之上的。数据挖掘可以通过对已有数据的处理,找到数据对象之间的关系,然后利用学习得到的模式进行合理的预测。这方面的系统有Fidelity Stock Selector和LBS Capital Management。前者的任务是使用神经网络模型选择投资,后者则使用了专家系统、神经网络和基因算法技术来辅助管理多达6亿美元的有价证券。3.欺诈甄别。银行或商业上经常发生行为,如恶性透支等,这些给银行和商业单位带来了巨大的损失。对这类行为进行预测可以减少损失。进行甄别主要是通过总结正常行为和行为之间的关系,得到行为的一些特性,这样当某项业务符合这些特征时,可以向决策人员提出警告。这方面应用非常成功的系统有:FALCON系统和FAIS系统。FALCON是HNC公司开发的信用卡欺诈估测系统,它已被相当数量的零售银行用于探测可疑的信用卡交易;FAIS则是一个用于识别与洗钱有关的金融交易的系统,它使用的是一般的政府数据表单。此外数据挖掘还可用于天文学上的遥远星体探测、基因工程的研究、web信息检索等。结束语随着数据库、人工智能、数理统计及计算机软硬件技术的发展,数据挖掘技术必能在更多的领域内取得更广泛的应用。 参考文献:[1]闫建红《数据库系统概论》的教学改革与探索[J].山西广播电视大学学报,2006,(15):16—17.

84 评论

Zzzz将将将

统计数据质量作为衡量统计工作绩效水平的重要依据,社会各界对其给予了更多的关注,也提出了更高的要求。下文是我为大家搜集整理的关于统计方面论文范文的内容,欢迎大家阅读参考!统计方面论文范文篇1 论我国统计方法制度改革 统计方法制度是我国统计工作的基础与规范,关系到什么是统计、怎样统计的问题,关系到统计质量的问题,关系到服务于决策者和社会等问题。随着市场经济体制建设的深入发展,统计工作进入到一个由旧体制向新体制转变的关键时期,统计方法制度伴随着生产经济方式的转变,进行了一系列改革。但是还存在着一些问题没有解决,提出相应的解决措施已经成为一个重要的课题,本文就此详细的进行了论述。 一、统计方法制度基本特点 统计方法制度是统计管理工作的一个重要的对象,是统计工作的一个基础与规范,贯彻与执行以及实施统计方法的相关制度就包括:我国基层中的统计工作者其统计工作、政府部门中统计工作者的统计工作、以及政府综合性的统计工作者其统计工作。 其主要的特点就包括以下几点: 首先,全面性。统计方法相关制度就是包括了各个领域,包括资源、流通、生产、以及分配等等,涉及到了三次产业以及国民经济的相关部门。从社会经济的各个方面来看,它就全面的反映了政治文明、社会文明、物质文明、以及科技文明、以及环境文明等等。 其次,可比性。从纵向上来说,我国的一些统计制度就在很大程度上保证了一定的可比性以及稳定性。统计制度就在很大程度上反映了长期的稳定与发展,这也是能够成为一个长期制度的原因,也是因为这种原因,才能够在经济运行的过程中发现一些存在的问题以及规律,从计算的方法来看,在我国的统计方法制度中,也在很大程度上保证了可比性以及稳定性。 此外,系统性。从管理的角度来说,统计方法制度就包括了部门、地方、以及国家的统计方法的制度。在时间上来说,这就包括了年报以及定报。从标准来说,这已经形成了一套标准。从其管理的方面来看,已经本文由论文联盟http://收集整理基本上形成了一种固定的模式。 二、我国的统计方法改革存在的问题 近年来,社会各界对统计信息的需求量剧增,无论是宏观管理还是微观经济活动,对统计信息的依赖程度愈来愈大,要求愈来愈高,与统计力量薄弱,统计法制不健全,协调监督不力,技术手段滞后,形成的反差很大。现行的统计体制的弊端越来越显示出来,主要表现在以下几方面: 第一,常规统计的内容以及范围还存在着一些缺口。在我国的一些常规性统计中,其调查制度的一些内容以及范围还存在着缺口,其覆盖面不是很全,这就意味着对我国的国民核算体系还缺乏一定的支撑作用。主要体现在以下几点:价格的统计制度不是很健全、常规服务业的缺口也比较大、以及一些专业的统计范围不是很健全。 第二,专业性统计制度之间的协调性较差。这就往往体现在年报以及普查之间的矛盾;抽样调查与全面报表的矛盾;核算统计相关制度与专业性统计制度的矛盾;我国的统计制度还没有形成一个完整的、协调的、有机的整体。 第三,统计的标准化程度还没有对现在的需要完全相适应,目前来说,很多的统计标准其在制定以及修订的过程中,往往是以国际的标准以及与国际标准相联系的标准予以展开的,而没有与实际相联系起来,没有结合着自身的发展以及相关的制度改革相联系,这类的标准是较少的。尤其是目前的一些在一定程度上制约了改革的调查单位,与城乡一体化相互配合的一些支出分类,以及反映出我国的一些企业登记与注册的标准等等都需要做到对其研究、制定、以及改革。 第四,重复性调查比较多,对基层来说起负担较重。统计信息的浪费比较严重。因为缺乏一种对制度的平衡以及整体性设计,这就造成了专业制度其内部、各个专业之间、部门统计以及综合统计之间的一种重复性调查,这就在很大程度上加大了工作量。首先,基层的统计数据其质量不是很高。其次,造成了数出多门以及一门多数或者是数据打架的一种情况。在这个过程中很多的统计信息就会被湮没,使得可以运用的信息较少,造成了不必要的浪费。 三、制度方法改革的思路及策略 综上所述,随着形势的发展,统计工作的现行体制、制度、方法等弊端就越加暴露出来,只有加大改革的力度,加快统计方法、制度的改革步伐,转变职能,统计工作才有生气,才有希望,才能不断地向前发展。 (一)完善统计指标体系 在不断的改革以及对社会经济发展的规律不但的认识基础上,要做到不断的去发现并要捕捉到经济发展中的一些难点以及热点问题,要对当前的一些适用的统计指标要保留,对一些过时的、陈旧的、不适用社会发展的一些指标予以去除,对指标体系做到不断的改进以及完善,使得整个的指标体系在真实的基础上反映出实际情况,做到对社会各个方面的统计与要求能够适应。 (二)改进统计的方法 统计工作应该要在实际的情况以及新环境的基础上,根据实际的调查对象其不同的特征来对统计方法进行改革,在实行普查的基础上,依靠着抽样调查以及全面报表体系,并且要利用一些非全面的调查方法,加强利用行政记录。对调查方法进行改革中,首先要保证数据的质量,早保证质量的基础上再对成本加以考虑,用比较少的花费以及比较小的一种力量,来实现一种统计的目的。目前来说,在调查方法体系中,存在的一个主要的问题就是推进行政管理体系以及调查方法之间的一种考核还存在的一些矛盾,怎样去协调以及管理,这就需要我们运用智慧去研究以及解决。 此外,还要对统计的标准化水平予以提升,还要不断的对国民经济的核算体系进行完善等。 四、结束语 总之,对我国的统计方法进行改革有着极为现实的意义,鉴于在统计方法制度中存在的一些问题,就应该不断的采取相应的措施,促进我国的统计方法制度的不断发展与完善。 统计方面论文范文篇2 浅析中等职业学校统计教学方法 1 《统计学》课程教学面临的挑战 《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。特别是指数、抽样调查这部分概念抽象难以理解,公式复杂不易计算,这些对于学生学好这一课程面临的困难是可想而知的。 现在中等职业学生的特点: 中职学校的学生是一个特殊的群体,由于当前严峻的升学和就业形势,导致多数人认为上中职学校没有发展前途,基础好的学生都上了高中,中职学校的生源都是被挑选后剩余的学生。他们在初中时期,大部分成绩不是很好,甚至有的学生是个别教师“遗忘的角落”。因此,在很大程度上,这一批学生心理上存在着一定的缺陷,对自己不自信、甚至破罐破摔,缺乏学习兴趣、甚至厌学。大部分学生理论学习热情不高,缺乏钻研精神,缺乏积极的学习动机,学习目标不明确,学习上得过且过、效率低下。并且,他们的信息来源非常广泛,外界诱惑非常大,因此课程学习远远不能满足他们的心理需要。他们热衷于网络、游戏、追星、享乐等,根本无心学习。因此,采用传统的教学方法不能适应当代中职教育的要求。另外,中职生源知识基础比较差,但智力素质并不差。他们的思维敏捷,动手能力较强,对新事物、新观念容易接受,适应性强,且追求时尚,追求财富,出人头地的梦想非常强烈。所以,我们必须注重发掘他们的潜力,努力实施“因材施教”。加强实践教学环节,改变“填鸭式”的传统教学方法,培养学生的操作能力,让学生在实践中学习、在实践中进步。 2 统计学教学设想 在教学内容上,依据excel的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。 传统方式上的数据整理是使用纸上表格,填入数据、文字,再利用计算器计算所需的结果,如求和、分类汇总、求平均值、数列分析等数学运算,但往往因为数据过于庞大复杂,不仅计算起来十分辛苦,而且容易出错。现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学应与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。这样既培养了学生搜集数据、分析数据的能力,还培养学生处理大量数据的能力,即数据挖掘的能力。 excel电子表格软件是大家生活工作上常用的一款软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握,已能满足常用的统计方面的要求。excel可以进行数据运算,绘制图表、统计运算等,应用于数据整理、数据描述、抽样分析与参数估计、时间数列分析,不仅可以减少繁琐的重复计算,而且一旦编制好一个工作底稿,以后只要更改其中任一数据,就可以轻松地重新自动计算结果。这样,一方面可以减轻数据整理工作量,学习统计不再意味着整天埋头于一堆枯燥无味的数据中,另一方面可以提高学生的学习兴趣。 通过统计实践学习统计。 统计的教学不能只停留在课本上,我们应以学生为中心,案例教学与情景教学应成为统计课程的重要内容。在统计教学过程中,我们应增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。还可以通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。 比如同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。 统计教学与日常生活相结合。 统计是一种社会调查活动,不论是宏观社会的整体调查研究,还是微观事物的观察分析,都需要统计。从微观上说,在日常生活中无处不存在着“统计”。例如,开学时,辅导员要统计一下到校的学生人数;篮球比赛中教练员要统计每个队员的投篮命中率、犯规的次数;农户在农作物收获后统计其产量等。再例如,家庭中的商品选购,买房买车,储蓄炒股,节水省电,参与彩票等等。在统计教学过程中,尽量把生活中的例子融入到统计课堂教学中。比如讲到正态分布,我们可以联系到我们的日常生活,你会发现许多现象呈现常态,虽有差异,偏离正常,但表现过高或过低的情况总是比较少,而且越不正常的可能性越少。比如人生目标,现实中“总统”只有一个,真正的发明家也不太多,而普通人随处可见。明确了这一规律,我们就不必为我们不是“总统”或“发明家”而气馁,我们应该像大多数普通人一样根据自己的实际情况树立一个通过努力就可以达到的目标。再说身边的朋友,最要好、最贴心的不会很多,明争暗斗、勾心斗角的也是少数,而不冷不热、不疏不亲的“点头朋友”却随处可见。“点头朋友”约占95%,也就说你在大街上随便碰到的100 个朋友中,大约只有五个是好朋友或坏朋友,其余都是“点头朋友”。明白了这一点,我们就应好好珍惜那少数几个难能可贵的好朋友们,对那95%的“点头朋友”要少些期待和要求,对那些无可救药的坏朋友则应该敬而远之,避免不必要的麻烦。这样书本上的知识也讲了,与实际生活相联系又增加了趣味性。 从宏观上说,一个国家一个社会更是离不开统计。在当代社会,统计学的应用越来越普及,人口学中的统计学应用(进行优生优育)、社会发展与评价、持续发展与环境保护、资源保护与利用、宏观经济监测与预测、政府统计数据收集与质量保证等都依赖于各类科学的统计方法。统计学在企业生产、经济生活中的应用也十分广泛,其中包括了保险精算、金融业数据库建设与风险管理、宏观经济监测与预测等一系列经济研究应用问题。 既然是处处离不开统计,那么我们就可以定期带领着同学们阅读各大新闻报纸及浏览各大统计官方网站,学习统计知识的同时又了解了国家大事。 改革考试方式和内容,合理评定学生成绩。 考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育、特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不拘一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。 3 结束语 教师在教学过程中要时刻明确学生是课堂的主体,教师要结合学生状况,灵活设计课堂模式,激发学生学习兴趣,了解和贯彻课程内容对学生能力和学生个性发展的要求,把学生放在教学的主导地位,引导学生发挥其主观能动性,培养学生信息学习的积极性、创造性和主观能动性,建立起能促进学生全面发展的教育教学模式。 猜你喜欢: 1. 统计方面论文优秀范文参考 2. 统计方面的论文范文 3. 统计学术论文范文 4. 统计优秀论文范文 5. 统计学论文范文

112 评论

quanshanneko

相关范文:数据挖掘技术及其应用摘要:随着网络、数据库技术的迅速发畏以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。关键词:数据挖掘;知识;分析;市场营销;金融投资随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。由此,数据挖掘技术应运而生。下面,本文对数据技术及其应用作一简单介绍。一、数据挖掘定义数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。简而言之,数据挖掘其实是一类深层次的数据分析方法。从这个角度数据挖掘也可以描述为:按企业制定的业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性,并进一步将其模型化的先进有效的方法。二、数据挖掘技术数据挖掘技术是人们长期对数据库技术进行研究和开发的结果,代写论文其中数据仓库技术的发展与数据挖掘有着密切的关系。大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖掘库或数据集市中,因为数据仓库会对数据进行清理,并会解决数据的不一致问题,这会给数据挖掘带来很多好处。此外数据挖掘还利用了人工智能(AI)和统计分析的进步所带来的好处,这两门学科都致力于模式发现和预测。数据库、人工智能和数理统计是数据挖掘技术的三大支柱。由于数据挖掘所发现的知识的不同,其所利用的技术也有所不同。1.广义知识。指类别特征的概括性描述知识。根据数据的微观特性发现其表征的、带有普遍性的、较高层次概念的、中观和宏观的知识,反映同类事物的共同性质,是对数据的概括、精炼和抽象。广义知识的发现方法和实现技术有很多,如数据立方体、面向屙性的归约等。数据立方体的基本思想是实现某些常用的代价较高的聚集函数的计算,诸如计数、求和、平均、最大值等,并将这些实现视图储存在多维数据库中。而面向属性的归约是以类SQL语言来表示数据挖掘查询,收集数据库中的相关数据集,然后在相关数据集上应用一系列数据推广技术进行数据推广,包括属性删除、概念树提升、属性阈值控制、计数及其他聚集函数传播等。2.关联知识。它反映一个事件和其他事件之间依赖或关联的知识。如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。最为著名的关联规则发现方法是Apriori算法和FP—Growth算法。关联规则的发现可分为两步:第一步是迭代识别所有的频繁项目集,要求频繁项目集的支持率不低于用户设定的最低值;第二步是从频繁项目集中构造可信度不低于用户设定的最低值的规则。识别或发现所有频繁项目集是关联规则发现算法的核心,也是计算量最大的部分。3.分类知识。它反映同类事物共同性质的特征型知识和不同事物之间的差异型特征知识。分类方法有决策树、朴素贝叶斯、神经网络、遗传算法、粗糙集方法、模糊集方法、线性回归和K—Means划分等。其中最为典型的分类方法是决策树。它是从实例集中构造决策树,是一种有指导的学习方法。该方法先根据训练子集形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练子集中,重复该过程一直到形成正确的决策集。最终结果是一棵树,其叶结点是类名,中间结点是带有分枝的屙性,该分枝对应该屙性的某一可能值。4.预测型知识。它根据时间序列型数据,由历史的和当前的数据去推测未来的数据,也可以认为是以时间为关键属性的关联知识。目前,时间序列预测方法有经典的统计方法、神经网络和机器学习等。1968年BoX和Jenkins提出了一套比较完善的时间序列建模理论和分析方法,这些经典的数学方法通过建立随机模型,进行时间序列的预测。由于大量的时间序列是非平稳的,其特征参数和数据分布随着时间的推移而发生变化。因此,仅仅通过对某段历史数据的训练,建立单一的神经网络预测模型,还无法完成准确的预测任务。为此,人们提出了基于统计学和基于精确性的再训练方法,当发现现存预测模型不再适用于当前数据时,对模型重新训练,获得新的权重参数,建立新的模型。5.偏差型知识。它是对差异和极端特例的描述,揭示事物偏离常规的异常现象,如标准类外的特例、数据聚类外的离群值等。所有这些知识都可以在不同的概念层次上被发现,并随着概念层次的提升,从微观到中观、到宏观,以满足不同用户不同层次决策的需要。三、数据挖掘流程数据挖掘是指一个完整的过程,该过程从大型数据库中挖掘先前未知的、有效的、可实用的信息,代写毕业论文并使用这些信息做出决策或丰富知识。数据挖掘的基本过程和主要步骤如下:过程中各步骤的大体内容如下:1.确定业务对象,清晰地定义出业务问题。认清数据挖掘的目的是数据挖掘的重要一步,挖掘的最后结构不可预测,但要探索的问题应该是有预见的,为了数据挖掘而挖掘则带有盲目性,是不会成功的。2.数据准备。(1)数据选择。搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据。(2)数据预处理。研究数据的质量,进行数据的集成、变换、归约、压缩等.为进一步的分析作准备,并确定将要进行的挖掘操作的类型。(3)数据转换。将数据转换成一个分析模型,这个分析模型是针对挖掘算法建立的,这是数据挖掘成功的关键。3.数据挖掘。对所得到的经过转换的数据进行挖掘。除了完善和选择合适的挖掘算法外,其余一切工作都能自动地完成。4.结果分析。解释并评估结果。其使用的分析方法一般应视挖掘操作而定,通常会用到可视化技术。5.知识同化。将分析所得到的知识集成到业务信息系统的组织结构中去。四、数据挖掘的应用数据挖掘技术从一开始就是面向应用的。目前在很多领域,数据挖掘都是一个很时髦的词,尤其是在如银行、电信、保险、交通、零售(如超级市场)等商业领域。1.市场营销。由于管理信息系统和P0S系统在商业尤其是零售业内的普遍使用,特别是条形码技术的使用,从而可以收集到大量关于用户购买情况的数据,并且数据量在不断激增。对市场营销来说,通过数据分析了解客户购物行为的一些特征,对提高竞争力及促进销售是大有帮助的。利用数据挖掘技术通过对用户数据的分析,可以得到关于顾客购买取向和兴趣的信息,从而为商业决策提供了可靠的依据。数据挖掘在营销业上的应用可分为两类:数据库营销(database markerting)和货篮分析(basket analysis)。数据库营销的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客,以便向它们推销产品。通过对已有的顾客数据的辱淅,可以将用户分为不同级别,级别越高,其购买的可能性就越大。货篮分析是分析市场销售数据以识别顾客的购买行为模式,例如:如果A商品被选购,那么B商品被购买的可能性为95%,从而帮助确定商店货架的布局排放以促销某些商品,并且对进货的选择和搭配上也更有目的性。这方面的系统有:Opportunity Ex-plorer,它可用于超市商品销售异常情况的因果分析等,另外IBM公司也开发了识别顾客购买行为模式的一些工具(IntdligentMiner和QUEST中的一部分)。2.金融投资。典型的金融分析领域有投资评估和股票交易市场预测,分析方法一般采用模型预测法(如神经网络或统计回归技术)。代写硕士论文由于金融投资的风险很大,在进行投资决策时,更需要通过对各种投资方向的有关数据进行分析,以选择最佳的投资方向。无论是投资评估还是股票市场预测,都是对事物发展的一种预测,而且是建立在对数据的分析基础之上的。数据挖掘可以通过对已有数据的处理,找到数据对象之间的关系,然后利用学习得到的模式进行合理的预测。这方面的系统有Fidelity Stock Selector和LBS Capital Management。前者的任务是使用神经网络模型选择投资,后者则使用了专家系统、神经网络和基因算法技术来辅助管理多达6亿美元的有价证券。3.欺诈甄别。银行或商业上经常发生行为,如恶性透支等,这些给银行和商业单位带来了巨大的损失。对这类行为进行预测可以减少损失。进行甄别主要是通过总结正常行为和行为之间的关系,得到行为的一些特性,这样当某项业务符合这些特征时,可以向决策人员提出警告。这方面应用非常成功的系统有:FALCON系统和FAIS系统。FALCON是HNC公司开发的信用卡欺诈估测系统,它已被相当数量的零售银行用于探测可疑的信用卡交易;FAIS则是一个用于识别与洗钱有关的金融交易的系统,它使用的是一般的政府数据表单。此外数据挖掘还可用于天文学上的遥远星体探测、基因工程的研究、web信息检索等。结束语随着数据库、人工智能、数理统计及计算机软硬件技术的发展,数据挖掘技术必能在更多的领域内取得更广泛的应用。参考文献:[1]闫建红《数据库系统概论》的教学改革与探索[J].山西广播电视大学学报,2006,(15):16—17.其他相关:数据挖掘研究现状及最新进展(CAJ格式)仅供参考,请自借鉴希望对您有帮助补充:如何撰写毕业论文本科专业(含本科段、独立本科段)自考生在各专业课程考试成绩合格后,都要进行毕业论文的撰写(工科类专业一般为毕业设计、医科类一般为临床实习)及其答辩考核。毕业论文的撰写及答辩考核是取得高等教育自学考试本科毕业文凭的重要环节之一,也是衡量自考毕业生是否达到全日制普通高校相同层次相同专业的学力水平的重要依据之一。但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,对本科专业自考生这一特定群体,就毕业论文的撰写进行必要指导,具有重要的意义。本文试就如何撰写毕业论文作简要论述,供参考。毕业论文是高等教育自学考试本科专业应考者完成本科阶段学业的最后一个环节,它是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题的能力。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成毕业论文的撰写可以分两个步骤,即选择课题和研究课题。首先是选择课题。选题是论文撰写成败的关键。因为,选题是毕业论文撰写的第一步,它实际上就是确定“写什么”的问题,亦即确定科学研究的方向。如果“写什么”不明确,“怎么写”就无从谈起。教育部自学考试办公室有关对毕业论文选题的途径和要求是“为鼓励理论与工作实践结合,应考者可结合本单位或本人从事的工作提出论文题目,报主考学校审查同意后确立。也可由主考学校公布论文题目,由应考者选择。毕业论文的总体要求应与普通全日制高等学校相一致,做到通过论文写作和答辩考核,检验应考者综合运用专业知识的能力”。但不管考生是自己任意选择课题,还是在主考院校公布的指定课题中选择课题,都要坚持选择有科学价值和现实意义的、切实可行的课题。选好课题是毕业论文成功的一半。第一、要坚持选择有科学价值和现实意义的课题。科学研究的目的是为了更好地认识世界、改造世界,以推动社会的不断进步和发展。因此,毕业论文的选题,必须紧密结合社会主义物质文明和精神文明建设的需要,以促进科学事业发展和解决现实存在问题作为出发点和落脚点。选题要符合科学研究的正确方向,要具有新颖性,有创新、有理论价值和现实的指导意义或推动作用,一项毫无意义的研究,即使花很大的精力,表达再完善,也将没有丝毫价值。具体地说,考生可从以下三个方面来选题。首先,要从现实的弊端中选题,学习了专业知识,不能仅停留在书本上和理论上,还要下一番功夫,理论联系实际,用已掌握的专业知识,去寻找和解决工作实践中急待解决的问题。其次,要从寻找科学研究的空白处和边缘领域中选题,科学研究还有许多没有被开垦的处女地,还有许多缺陷和空白,这些都需要填补。应考者应有独特的眼光和超前的意识去思索,去发现,去研究。最后,要从寻找前人研究的不足处和错误处选题,在前人已提出来的研究课题中,许多虽已有初步的研究成果,但随着社会的不断发展,还有待于丰富、完整和发展,这种补充性或纠正性的研究课题,也是有科学价值和现实指导意义的。第二、要根据自己的能力选择切实可行的课题。毕业论文的写作是一种创造性劳动,不但要有考生个人的见解和主张,同时还需要具备一定的客观条件。由于考生个人的主观、客观条件都是各不相同的,因此在选题时,还应结合自己的特长、兴趣及所具备的客观条件来选题。具体地说,考生可从以下三个方面来综合考虑。首先,要有充足的资料来源。“巧妇难为无米之炊”,在缺少资料的情况下,是很难写出高质量的论文的。选择一个具有丰富资料来源的课题,对课题深入研究与开展很有帮助。其次,要有浓厚的研究兴趣,选择自己感兴趣的课题,可以激发自己研究的热情,调动自己的主动性和积极性,能够以专心、细心、恒心和耐心的积极心态去完成。最后,要能结合发挥自己的业务专长,每个考生无论能力水平高低,工作岗位如何,都有自己的业务专长,选择那些能结合自己工作、发挥自己业务专长的课题,对顺利完成课题的研究大有益处。选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。第一、研究课题的基础工作———搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。调查的方法有:普遍调查、重点调查、典型调查、抽样调查。调查的方式有:开会、访问、问卷。最后,关于实验与观察。实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。第二、研究课题的重点工作———研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。通读即对全文进行阅读,选读即对有用部分、有用内容进行阅读,研读即对与研究课题有关的内容进行全面、认真、细致、深入、反复的阅读。在研读过程中要积极思考。要以书或论文中的论点、论据、论证方法与研究方法来触发自己的思考,要眼、手、脑并用,发挥想象力,进行新的创造。在研究资料时,还要做好资料的记录。第三、研究课题的核心工作―――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。根据已确立的基本论点和分论点选定材料,这些材料是自己在对所搜集的资料加以研究的基础上形成的。组织材料要注意掌握科学的思维方法,注意前后材料的逻辑关系和主次关系。第四、研究课题的关键工作―――执笔撰写。考生下笔时要对以下两个方面加以注意:拟定提纲和基本格式。拟定提纲包括题目、基本论点、内容纲要。内容纲要包括大项目即大段段旨、中项目即段旨、小项目即段中材料或小段段旨。拟定提纲有助于安排好全文的逻辑结构,构建论文的基本框架。基本格式:一般毕业论文由标题、摘要、正文、参考文献等4方面内容构成。标题要求直接、具体、醒目、简明扼要。摘要即摘出论文中的要点放在论文的正文之前,以方便读者阅读,所以要简洁、概括。正文是毕业论文的核心内容,包括绪论、本论、结论三大部分。绪论部分主要说明研究这一课题的理由、意义,要写得简洁。要明确、具体地提出所论述课题,有时要写些历史回顾和现状分析,本人将有哪些补充、纠正或发展,还要简单介绍论证方法。本论部分是论文的主体,即表达作者的研究成果,主要阐述自己的观点及其论据。这部分要以充分有力的材料阐述观点,要准确把握文章内容的层次、大小段落间的内在联系。篇幅较长的论文常用推论式(即由此论点到彼论点逐层展开、步步深入的写法)和分论式(即把从属于基本论点的几个分论点并列起来,一个个分别加以论述)两者结合的方法。结论部分是论文的归结收束部分,要写论证的结果,做到首尾一贯,同时要写对课题研究的展望,提及进一步探讨的问题或可能解决的途径等。参考文献即撰写论文过程中研读的一些文章或资料,要选择主要的列在文后。第五、研究课题的保障工作―――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。总之,撰写毕业论文是一种复杂的思维活动,对于缺乏写作经验的自考生来说,确有一定的难度。因此,考生要“学习学习再学习,实践实践再实践”,虚心向指导教师求教。

287 评论

西关少爷Billy

懒惰阿。。。开题还是论文?这个没有,你问多少人也不会为这点分给你现写的。告诉你个好方法:从中国知网(没账号密码?不好意思,再悬赏200分自己问去吧)上搜索往年的论文,然后把.NK格式的大论文的前言部分找自己需要的粘贴下来,再自己添几句话使之看起来不象别人的文章,多搜几篇1000字很好搞定,就看你想不想做了。话已至此,得分~~

204 评论

哆啦Y梦

我所要研究的课题是“中国医药批发企业现状与发展”。对一个医药批发企业来说,最重要的就是药品的来源和销售,每个医药企业都有固定的供应商和一定的营销手段,药品的供应需要医药物流的支持,而销售呢,就需要医药销售的支持,所以医药批发企业的现状与发展,是随着医药物流和医药销售而走的。 然而,在进公司工作一段时间后,我慢慢的对企业有了一定的了解,知道了一个医药批发企业如果想做大做好,就要运用网络,建立医药电子商务,这样医药批发企业才会有更好的发展。最后,我根据自己的个人看法,对医药批发企业的发展趋势做了几点归纳, 本次我要做的课题的目的和意义是:随着医药行业的发展,医药批发企业也孕育而生,得到了飞速的发展。而医药批发企业又是药厂与医院、药店的连接线,所以,医药批发企业的现状和发展再医药行业中占有很重要的地位。同时,本次所做的课题,让我深刻地了解了医药批发企业现状与发展。使我对医药批发企业有了一个深刻的了解。同时对我以后的工作有很大的帮助。

163 评论

相关问答

  • 糖尿病数据挖掘论文

    这都行。。。。。

    汤包sama 5人参与回答 2023-12-09
  • 药学数据挖掘论文范文题目

    论文题目是一篇药学论文的重要组成部分,理想的药学论文题目能吸引读者浏览全文,提高 文章 的被关注度。下面是我带来的关于药学论文题目的内容,欢迎阅读参考!

    pan369247787 2人参与回答 2023-12-10
  • 药学数据挖掘论文范文大全

    生物医药产业近年来引起世界各国的高度重视,我国也把生物医药产业作为重点发展的支柱性产业,从政策和规划上积极进行扶持。下面是我为大家整理的生物医药论文,供大家参考

    5ichocolate 2人参与回答 2023-12-10
  • 药学数据挖掘论文范文

    摘要:随着网络、数据库技术的迅速发畏以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信

    小鱼qt1988 5人参与回答 2023-12-11
  • 数据挖掘医学杂志

    有MEDLINE、《中华医学杂志》、骨密度数据库、CBM、PubMed等。 1、MEDLINE MEDLINE是美国国立医学图书馆(The National L

    汤包sama 7人参与回答 2023-12-09