彼岸之澄
1. 多组率的比较用卡方检验(χ2检验,chi-square test)直接用几个率的数值比较,与直接用原始数据录入比较,结果会有什么不同?卡方值会受样本量的影响,样本越多,卡方值越大。2.多组计量资料比较采用方差分析(F检验) ,不能用t检验。当方差分析结果为P<时,只能说明k组总体均数之间不完全相同。若想进一步了解哪两组的差别有统计学意义,需进行多个均数间的多重比较,即SNK-q检验 (多个均数两两之间的全面比较 )、LSD-t检验 (适用于一对或几对在专业上有特殊意义的均数间差别的比较)和Dunnett检验 (适用于k-1个实验组与一个对比组均数差别的多重比较 )。3.非正态分布多组数据之间比较选用非参数检验、单样本中位数检验(符号检验和 Wilcoxon 检验)、双样本中位数检验(Mann-Whitney 检验)、方差分析(Kruskal-Wallis、Mood 中位数和 Friedman 检验)4.按血糖水平从低到高分成多组,进行多组之间死亡率的比较,由于死亡率同样受年龄、性别、病史、血脂等因素的影响,所以需选取合适统计方法实现“调整年龄、性别等危险因素后,按血糖分组进行死亡率的比较(由血糖从低到高分成的4组)”。①年龄是定量变量(是数值),调整年龄的方法可在Logistic回归中运用,连续性变量年龄加入covariate中,当成协变量,就可以调整年龄,age-adjusted odds ratio就能得到了。②性别性别是二分类变量,不是定量变量,不可在LOGISTIC回归里比较。调整性别可在卡方检验中采取分层的方法比较。如果为多分类LOGISTIC回归,在选择用multinomianl LOGISTIC回归中,可选入年龄等进入covariate,观察年龄的配比情况。可把性别选入factors(自变量)。这样可以实现调整年龄、性别等危险因素。5.回顾性研究(1)临床妊娠率和女性年龄的关系+(2)男性影响临床妊 娠的精子参数比较:数据类型及变量的说明:y:计量拟采用的分析方法:卡方检验拟采用的分析软件:spss原始数据附件及格式:word表能否用其他方法统计分析:可用卡方分割,调整检验水准(根据比较的次数N,校正后的检验水准为)。6.重复t检验:多个样本均数间的两两比较(又称多重比较)不宜用t检验,因为重复数次,t检验将增加第一类错误的概率,使检验效率降低。此时宜用方差分析,并在此基础上用两两比较方法(如.SNK、LSD、Duncan法等)。对于同一对均数间的差异,用t检验无显著性,而两两比较可能有显著性,可见错误选用统计方法将推出错误结论。
淡粉浅蓝
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
银眼的狮子王
一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。
april841002
正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。2、建好分析用的数据库建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义
经常有人问到在论文或标书中应该如何写作统计分析部分。标准的答案是:你怎么做的就怎么写,每篇文章都是唯一的存在。好装,汗……。如果我们尝试去归纳和小结,这部分内容
去知网找,那里肯定有你要的论文,自己可以先搜搜看,不知道怎样找的话,可以去我百度空间里,有如何在网络上找论文的文章介绍
1. 多组率的比较用卡方检验(χ2检验,chi-square test)直接用几个率的数值比较,与直接用原始数据录入比较,结果会有什么不同?卡方值会受样本量的影
1. 多组率的比较用卡方检验(χ2检验,chi-square test)直接用几个率的数值比较,与直接用原始数据录入比较,结果会有什么不同?卡方值会受样本量的影
医学统计论文 医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。 摘要: 不同的统计分