jiuxing2015
某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。
浅葱de琴
你就交一篇关于拓扑学的文章吧!以下是资料,自己挑挑拣拣点有用的吧!我就不帮你了,(飘走~~~~)拓扑学拓扑定义是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογία的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。编辑本段拓扑性质拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。换句话讲,就是从拓扑学的角度看,它们是完全一样的。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。拓扑变换的不变性、不变量还有很多,这里不在介绍。编辑本段拓扑发展拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。编辑本段发展简史拓扑学起初叫形势分析学,这是.莱布尼茨1679年提出的名词(中文译成形势,形指一个图形本身的性质,势指一个图形与其子图形相对的性质,经过20世纪30年代中期起布尔巴基学派的补充(一致性空间、仿紧性等)和整理,纽结和嵌入问题就是势的问题)。随后波兰学派和苏联学派对拓扑空间的基本性质(分离性、紧性、连通性等)做了系统的研究。L.欧拉1736年解决了七桥问题,1750年发表了多面体公式;.高斯1833年在电动力学中用线积分定义了空间中两条封闭曲线的环绕数。拓扑学这个词(中文是音译)是.利斯廷提出的(1847),源自希腊文(位置、形势)与(学问)。这是萌芽阶段。1851年起,B.黎曼在复函数的研究中提出了黎曼面的几何概念,并且强调,为了研究函数、研究积分,就必须研究形势分析学。从此开始了拓扑学的系统研究,在点集论的思想影响下,黎曼本人解决了可定向闭曲面的同胚分类问题。如聚点(极限点)、开集、闭集、稠密性、连通性等。在几何学的研究中黎曼明确提出n维流形的概念(1854)。得出许多拓扑概念,组合拓扑学的奠基人是H.庞加莱。他是在分析学和力学的工作中,特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,引向拓扑学问题的,但他的方法有时不够严密,他的主要兴趣在n维流形。在1895~1904年间,他创立了用剖分研究流形的基本方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,并提出了具体计算的方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,他探讨了三维流形的拓扑分类问题,提出了著名的庞加莱猜想。他留下的丰富思想影响深远,但他的方法有时不够严密,过多地依赖几何直观。特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,拓扑学的另一渊源是分析学的严密化。他是在分析学和力学的工作中,实数的严格定义推动G.康托尔从1873年起系统地展开了欧氏空间中的点集的研究,得出许多拓扑概念,如聚点(极限点)、开集、闭集、稠密性、连通性等。在点集论的思想影响下,分析学中出现了泛函数(即函数的函数)的观念,把函数集看成一种几何对象并讨论其中的极限。这终于导致抽象空间的观念。这样,B.黎曼在复函数的研究中提出了黎曼面的几何概念,到19、20世纪之交,已经形成了组合拓扑学与点集拓扑学这两个研究方向。这是萌芽阶段。一般拓扑学 最早研究抽象空间的是.弗雷歇,在1906年引进了度量空间的概念。F.豪斯多夫在《集论大纲》(1914)中用开邻域定义了比较一般的拓扑空间,标志着用公理化方法研究连续性的一般拓扑学的产生。L.欧拉1736年解决了七桥问题,随后波兰学派和苏联学派对拓扑空间的基本性质(分离性、紧性、连通性等)做了系统的研究。经过20世纪30年代中期起布尔巴基学派的补充(一致性空间、仿紧性等)和整理,一般拓扑学趋于成熟,成为第二次世界大战后数学研究的共同基础。从其方法和结果对于数学的影响看,紧拓扑空间和完备度量空间的理论是最重要的。紧化问题和度量化问题也得到了深入的研究。公理化的一般拓扑学晚近的发展可见一般拓扑学。欧氏空间中的点集的研究,例如,一直是拓扑学的重要部分,已发展成一般拓扑学与代数拓扑学交汇的领域,也可看作几何拓扑学的一部分。50年代以来,即问两个映射,以.宾为代表的美国学派的工作加深了对流形的认识,是问两个给定的映射是否同伦,在四维庞加莱猜想的证明中发挥了作用。从皮亚诺曲线引起的维数及连续统的研究,习惯上也看成一般拓扑学的分支。代数拓扑学 .布劳威尔在1910~1912年间提出了用单纯映射逼近连续映射的方法, 许多重要的几何现象,用以证明了不同维的欧氏空间不同胚,它们就不同胚。引进了同维流形之间的映射的度以研究同伦分类,并开创了不动点理论。他使组合拓扑学在概念精确、论证严密方面达到了应有的标准,而欧拉数υ-e+ƒ>则是)。成为引人瞩目的学科。紧接着,.亚历山大1915年证明了贝蒂数与挠系数的拓扑不变性。如连通性、紧性),随着抽象代数学的兴起,1925年左右.诺特提议把组合拓扑学建立在群论的基础上,在她的影响下H.霍普夫1928年定义了同调群。从此组合拓扑学逐步演变成利用抽象代数的方法研究拓扑问题的代数拓扑学。如维数、欧拉数,S.艾伦伯格与.斯廷罗德1945年以公理化的方式总结了当时的同调论,后写成《代数拓扑学基础》(1952),对于代数拓扑学的传播、应用和进一步发展起了巨大的推动作用。他们把代数拓扑学的基本精神概括为:把拓扑问题转化为代数问题,通过计算来求解。同调群,以及在30年代引进的上同调环,都是从拓扑到代数的过渡(见同调论)。直到今天,三角形与圆形同胚;而直线与圆周不同胚,同调论(包括上同调)所提供的不变量仍是拓扑学中最易于计算的,因而也最常用的。不必加以区别。同伦论研究空间的以及映射的同伦分类。W.赫维茨1935~1936年间引进了拓扑空间的n维同伦群,其元素是从n维球面到该空间的映射的同伦类,而且ƒ同它的逆映射ƒ-1:B→A都是连续的,一维同伦群恰是基本群。同伦群提供了从拓扑到代数的另一种过渡,确切的含义是同胚。其几何意义比同调群更明显, 前面所说的几何图形的连续变形,但是极难计算。同伦群的计算,特别是球面的同伦群的计算问题刺激了拓扑学的发展,产生了丰富多彩的理论和方法。1950年.塞尔利用J.勒雷为研究纤维丛的同调论而发展起来的谱序列这个代数工具,最简单的例子是欧氏空间。在同伦群的计算上取得突破,为其后拓扑学的突飞猛进开辟了道路。从50年代末在代数几何学和微分拓扑学的影响下产生了K 理论,解决了关于流形的一系列拓扑问题开始,出现了好几种广义同调论。它们都是从拓扑到代数的过渡,就是一个广义的几何图形。尽管几何意义各不相同,如物理学中一个系统的所有可能的状态组成所谓状态空间,代数性质却都与同调或上同调十分相像,是代数拓扑学的有力武器。从理论上也弄清了,同调论(普通的和广义的)本质上是同伦论的一部分。从微分拓扑学到几何拓扑学 微分拓扑学是研究微分流形与微分映射的拓扑学。这些性质与长度、角度无关,.拉格朗日、B.黎曼、H.庞加莱早就做过微分流形的研究;随着代数拓扑学和微分几何学的进步, 以上这些例子启示了:几何图形还有一些不能用传统的几何方法来研究的性质。在30年代重新兴起。H.惠特尼1935年给出了微分流形的一般定义,并证明它总能嵌入高维欧氏空间作为光滑的子流形。为了研究微分流形上的向量场,他还提出了纤维丛的概念,从而使许多几何问题都与上同调(示性类)和同伦问题联系起来了。1953年R.托姆的协边理论(见微分拓扑学)开创了微分拓扑学与代数拓扑学并肩跃进的局面,许多困难的微分拓扑问题被化成代数拓扑问题而得到解决,同时也刺激了代数拓扑学的进一步发展。从动点指向其像点的向量转动的圈数。1956年.米尔诺发现七维球面上除了通常的微分结构之外,还有不同寻常的微分结构。每个不动点也有个“指数”,随后,不能赋以任何微分结构的流形又被人构作出来,这些都显示拓扑流形、微分流形以及介于其间的分段线性流形这三个范畴有巨大的差别,微分拓扑学也从此被公认为一个独立的拓扑学分支。1960年S.斯梅尔证明了五维以上微分流形的庞加莱猜想。.米尔诺等人发展了处理微分流形的基本方法——剜补术,使五维以上流形的分类问题亦逐步趋向代数化。近些年来,有关流形的研究中,几何的课题、几何的方法取得不少进展。突出的领域如流形的上述三大范畴之间的关系以及三维、四维流形的分类。80年代初的重大成果有:证明了四维庞加莱猜想,发现四维欧氏空间竟还有不同寻常的微分结构。这种种研究,通常泛称几何拓扑学,以强调其几何色彩,而环面上却可以造出没有奇点的向量场。区别于代数味很重的同伦论。拓扑学与其他学科的关系 连续性与离散性这对矛盾在自然现象与社会现象中普遍存在着,数学也可以粗略地分为连续性的与离散性的两大门类。拓扑学对于连续性数学自然是带有根本意义的,对于离散性数学也起着巨大的推进作用。例如,拓扑学的基本内容已经成为现代数学工作者的常识。拓扑学的重要性,体现在它与其他数学分支、其他学科的相互作用。拓扑学与微分几何学有着血缘关系, target="_blank">向量场问题 考虑光滑曲面上的连续的切向量场,它们在不同的层次上研究流形的性质。就看其中是否不含有这两个图之一。为了研究黎曼流形上的测地线,一个网络是否能嵌入平面,.莫尔斯在20世纪20年代建立了非退化临界点理论,把流形上光滑函数的临界点的指数与流形本身的贝蒂数联系起来,并发展成大范围变分法。莫尔斯理论后来又用于拓扑学中,证明了典型群的同伦群的博特周期性(这是K 理论的基石),并启示了处理微分流形的剜补术。微分流形、纤维丛、示性类给É.嘉当的整体微分几何学提供了合适的理论框架,也从中获取了强大的动力和丰富的课题。G.皮亚诺在1890年竟造出一条这样的“曲线”,陈省身在40年代引进了“陈示性类”,就不但对微分几何学影响深远,随一个参数(时间)连续变化的动点所描出的轨迹就是曲线。对拓扑学也十分重要。朴素的观念是点动成线,纤维丛理论和联络论一起为理论物理学中杨-米尔斯规范场论(见杨-米尔斯理论)提供了现成的数学框架, 维数问题 ">维数问题 什么是曲线?犹如20世纪初黎曼几何学对于A.爱因斯坦广义相对论的作用。规范场的研究又促进了四维的微分拓扑学出人意料的进展。拓扑学对于分析学的现代发展起了极大的推动作用。随着科学技术的发展,需要研究各式各样的非线性现象,分析学更多地求助于拓扑学。要问一个结能否解开(即能否变形成平放的圆圈),3O年代J.勒雷和.绍德尔把.布劳威尔的不动点定理和映射度理论推广到巴拿赫空间形成了拓扑度理论。后者以及前述的临界点理论,纽结问题 ">纽结问题 空间中一条自身不相交的封闭曲线,都已成为研究非线性偏微分方程的标准的工具。所以这颜色数也是曲面在连续变形下不变的性质。微分拓扑学的进步,促进了分析学向流形上的分析学(又称大范围分析学)发展。在托姆的影响下,然后随意扭曲,微分映射的结构稳定性理论和奇点理论已发展成为重要的分支学科。S.斯梅尔在60年代初开始的微分动力系统的理论,要七色才够。就是流形上的常微分方程论。.阿蒂亚等人60年代初创立了微分流形上的椭圆型算子理论。著名的阿蒂亚-辛格指标定理把算子的解析指标与流形的示性类联系起来,是分析学与拓扑学结合的范例。现代泛函分析的算子代数已与K 理论、指标理论、叶状结构密切相关。在多复变函数论方面,来自代数拓扑的层论已经成为基本工具。拓扑学的需要大大刺激了抽象代数学的发展,并且形成了两个新的代数学分支:同调代数与代数K 理论。 四色问题 在平面或球面上绘制地图,代数几何学从50年代以来已经完全改观。把曲面变形成多面体后的欧拉数υ-e+ƒ在其中起着关键的作用(见 target=_blank>闭曲面的分类).托姆的协边论直接促使代数簇的黎曼-罗赫定理的产生,后者又促使拓扑K 理论的产生。现代代数几何学已完全使用上同调的语言,在连续变形下封闭曲面有多少种不同类型?代数数论与代数群也在此基础上取得许多重大成果,例如有关不定方程整数解数目估计的韦伊猜想和莫德尔猜想的证明(见代数数论)。范畴与函子的观念,是在概括代数拓扑的方法论时形成的。范畴论已深入数学基础、代数几何学等分支(见范畴);对拓扑学本身也有影响,通俗的说法是框形里有个洞。如拓扑斯的观念大大拓广了经典的拓扑空间观念。凸形与框形之间有比长短曲直更本质的差别,在经济学方面,这说明,J.冯·诺伊曼首先把不动点定理用来证明均衡的存在性。在现代数理经济学中,对于经济的数学模型,均衡的存在性、性质、计算等根本问题都离不开代数拓扑学、微分拓扑学、大范围分析的工具。在系统理论、对策论、规划论、网络论中拓扑学也都有重要应用。托姆以微分拓扑学中微分映射的奇点理论为基础创立了突变理论,为从量变到质变的转化提供各种数学模式。在物理学、化学、生物学、语言学等方面已有不少应用"欧拉的多面体公式与曲面的分类 ">欧拉的多面体公式与曲面的分欧拉发现,除了通过各数学分支的间接的影响外,拓扑学的概念和方法对物理学(如液晶结构缺陷的分类)、化学(如分子的拓扑构形)、生物学(如DNA的环绕、拓扑异构酶)都有直接的应用。拓扑学与各数学领域、各科学领域之间的边缘性研究方兴未艾。
xieyouliab
实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。实数包括所有的有理数和无理数,比如0、 、、π 等。但仅仅以枚举的方式不能描述实数的全体。根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1cm的正方形为例,其对角线有多长?在规定的精度下(比如误差小于厘米),总可以用有理数来表示足够精确的测量结果(比如厘米)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击;见第一次数学危机。从古希腊一直到十七世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托等人对实数进行了严格处理。在目前的初等数学中,没有对实数进行严格的定义,而一般把实数看作小数(有限或无限的)。实数的完整定义在几何上,直线上的点与实数一一对应;见数轴。实数可以分为有理数(如42、)和无理数(如π、√2)两类,也可以分为代数数和超越数(有理数都是代数数),或正数,负数和零三类。实数集合通常用字母R或表示。而Rn表示n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续变化的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。[编辑]历史在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。[编辑]定义[编辑]从有理数构造实数实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3, , , , ,…}所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。[编辑]公理化方法设R是所有实数的集合,则:集合R是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。域R是个有序域,即存在全序关系≥,对所有实数x, y和z:若x ≥ y则x + z ≥ y + z;若x ≥ 0且y ≥ 0则x'y ≥ 0。集合R满足戴德金完备性,即任意R的非空子集S (S ⊆ R, S ≠ ∅),若S在R内有上界,那么S在R内有上确界。最后一条是区分实数和有理数的关键。例如所有平方小于2的有理数的集合存在有理数上界,如;但是不存在有理数上确界(因为不是有理数)。实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域R1和R2,存在从R1到R2的唯一的域同构,即代数学上两者可看作是相同的。[编辑]例子15 (整数) (有限小数)... (无限循环小数)π = ... (无限不循环小数) (无理数) (分数)[编辑]性质[编辑]基本运算在实数域内,可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数;只有非负实数才能开偶次方,其结果还是实数。[编辑]完备性作为度量空间或一致空间,实数集合是一个完备空间,它有以下性质:所有实数的柯西序列都有一个实数极限。有理数集合就不是完备空间。例如,(1, , , , , , ...)是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限。实数是有理数的完备化:这亦是构造实数集合的一种方法。极限的存在是微积分的基础。实数的完备性等价于欧几里得几何的直线没有“空隙”。[编辑]完备的有序域实数集合通常被描述为“完备的有序域”,这可以几种解释。首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z + 1将更大)。所以,这里的“完备”不是完备格的意思。另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。[编辑]高级性质实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的ZFS公理系统相互独立。所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。实数集拥有一个规范的测度,即勒贝格测度。实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于R,但也同样满足和R一样的一阶逻辑命题。满足和R一样的一阶逻辑命题的有序域称为R的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在R中证明要简单一些),从而确定这些命题在R中也成立。[编辑]拓扑性质实数集构成一个度量空间:x和y间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:令为一实数。的邻域是实数集中一个包括一段含有的线段的子集。是可分空间。在中处处稠密。的开集是开区间的联集。的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。每个中的有界序列都有收敛子序列。是连通且单连通的。中的连通子集是线段、射线与本身。由此性质可迅速导出中间值定理。区间套定理:设为一个有界闭集的序列,且,则其交集非空。严格表法如下:.[编辑]扩展与一般化实数集可以在几种不同的方面进行扩展和一般化:最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。有时候,形式元素 +∞和 -∞加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。
校园网络搭建毕业论文 维护校园网网络安全需要从网络的搭建及网络安全设计方面着手,通过各种技术手段,对校园网网络进行搭建,通过物理、数据等方面的设计对网络安全进行
论文> 工业技术 > 一般工业技术 > 工程基础科学 > 工程数学 > 概率论、数理统计的应用论文下属分类: 运筹学的应用 | 工程控制论 | 可靠性理论 |
美国能源部艾姆斯实验室的科学家们发现了一种控制三维拓扑绝缘体表面导电性的方法,这种材料在自旋电子器件和量子计算中有潜在的应用前景。三维拓扑绝缘子是一种新兴的材料
1、星型结构。特点:星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影
某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最