• 回答数

    3

  • 浏览数

    334

走遍大中华
首页 > 职称论文 > 人脸识别论文研究内容

3个回答 默认排序
  • 默认排序
  • 按时间排序

刘彦热茶

已采纳

摘 要 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等,有着非常广泛的应用价值。随机森林以它自身固有的特点和优良的分类效果在众多的机器学习算法中脱颖而出。随机森林算法的实质是一种树预测器的组合,其中每一棵树都依赖于一个随机向量,森林中的所有的向量都是独立同分布的。本文简单介绍了随机森林的原理,并对近几年来随机森林在姿势识别和人脸识别中的应用进行讨论。 1.人体识别概述 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等。其研究方法几乎囊括了所有的模式识别问题的理论与技术,例如统计理论,变换理论,上下文相关性,分类与聚类,机器学习,模板匹配,滤波等。人体识别有着非常广泛的应用价值。 绝大多数人脸识别算法和人脸表情分析算法在提取人脸特征之前,需要根据人脸关键点的位置(如眼角,嘴角)进行人脸的几何归一化处理。即使在已知人脸粗略位置的情况下,人脸关键点精确定位仍然是一个很困难的问题,这主要由外界干扰和人脸本身的形变造成。 当前比较流行的算法有:基于启发式规则的方法、主成分分析(PCA)、独立元分析(ICA)、基于K-L 变换、弹性图匹配等。 2.随机森林综述 随机森林顾名思义,使用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的死后,就让森林的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类能被选择最多,就预测这个样本为那一类。 随机森林是一种统计学习理论,其随机有两个方面:首先是在训练的每一轮中,都是对原始样本集有放回的抽取固定数目的样本点,形成k个互不相同的样本集。第二点是:对于每一个决策树的建立是从总的属性中随机抽取一定量的属性作分裂属性集,这样对于k个树分类器均是不相同的。由随机生成的k个决策树组成了随机森林。 对于每一个决策树来讲,其分裂属性是不断的选取具有最大信息增益的属性进行排列。整个随机森林建立后,最终的分类标准采用投票机制得到可能性最高的结果。 下图是随机森林构建的过程: 图1 随机森林构建过程 3.随机森林在人体识别中的应用 随机森林应用于姿势识别 以[1]一文来讨论,论文中所涉及到的人体识别过程主要分为两步,首先是,身体部位标记:对于从单张景深图像中对人体进行分段,并标记出关键节点。之后进行身体关节定位,将标记的各个人体部分重新映射到三维空间中,对关键节点形成高可靠的空间定位。 图2 深度图像-身体部位标记-关节投影 文的最主要贡献在于将姿势识别的问题转化成了物体识别的问题,通过对身体不同部位的空间位置的确定来实现,做到了低计算消耗和高精确度。在身体部位标记的过程中,将问题转化成了对每个像素的分类问题,对于每个像素点,从景深的角度来确定该点的局域梯度特征。该特征是点特征与梯度特征的良好结合。 举个例子,对于不同点的相同属性值的判别,如下图,图a中的两个测量点的像素偏移间均具有较大的景深差,而图b中的景深差则明显很小。由此看出,不同位置像素点的特征值是有明显差别的,这就是分类的基础。 图3 景深图像特质示例 文中对于决策树的分裂属性的选择来说。由于某两个像素点、某些图像特征选取的随意性,将形成大量的备选划分形式,选择对于所有抽样像素对于不同的分裂属性划分前后的信息熵增益进行比较,选取最大的一组ψ=(θ, τ)作为当前分裂节点。(信息增益与该图像块最终是否正确地分类相关,即图像块归属于正确的关键特征点区域的概率。) 图4 决策时分类说明 决策树的建立后,某个叶子节点归属于特定关键特征点区域的概率可以根据训练图像最终分类的情况统计得到,这就是随机森林在实际检测特征点时的最重要依据。 在人体关节分类中,我们由形成的决策森林,来对每一个像素点的具体关节属性进行判断,并进行颜色分类。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 如图所示,是对于景深图像处理后的结果展示。 图5 姿势识别处理结果 应该这样说,这篇文章在算法的层面对随机森林没有太大的贡献。在划分函数的形式上很简单。这个团队值得称道的地方是通过计算机图形学造出了大量的不同体型不同姿势的各种人体图像,用作训练数据,这也是成为2011年CVPR Best Paper的重要原因。正是因为论文的成果运用于Kinect,在工业界有着巨大的作用,落实到了商用的硬件平台上,推动了随机森林在计算机视觉、多媒体处理上的热潮。 随机森林应用于人脸识别 基于回归森林的脸部特征检测通过分析脸部图像块来定位人脸的关键特征点,在此基础上条件回归森林方法考虑了全局的脸部性质。对于[2]进行分析,这篇论文是2012年CVPR上的论文,本文考虑的是脸部朝向作为全局性质。其主要描述的问题是如何利用条件随机森林,来确定面部10个关键特征点的位置。与之前不同的是,在随机森林的基础上,加入了面部朝向的条件约束。 图6 脸部10个特征点 对于面部特征标记的问题转化成了对大量图像块的分类问题。类似于人体识别中的局域梯度特征识别。本文中,对于每一个图像块来说,从灰度值、光照补偿、相位变换等图像特征,以及该图像块中心与各个特征点的距离来判断图像块的位置特征。在决策树的分裂属性确定过程,依然使用“最大信息熵增益”原则。 图7 条件随机森林算法说明 文中提出了更进一步基于条件随机森林的分类方法,即通过设定脸部朝向的约束对决策树分类,在特征检测阶段能够根据脸部朝向选择与之相关的决策树进行回归,提高准确率和降低消耗。此论文还对条件随机森林,即如何通过脸部朝向对决策进行分类进行了说明,但这与随机森林算法没有太大关系,这里就不再继续讨论了。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 另一篇文章[3]对于脸部特征标记,提出了精确度更高、成本更低的方法。即,基于结构化输出的随机森林的特征标记方式。文中将面部划分为20个特征点,对于各个特征点来说,不仅有独立的图像块分类标记,还加入了例如,点4,对于其他嘴唇特征点3,18,19的依赖关系的判断。这样的方法使特征点标记准确率大大增加。 该方法依然是使用随机森林的方法,有所不同的是引入了如式中所示的与依赖节点之间的关系。对于决策树的建立依然是依赖信息熵增益原则来决定,叶子节点不仅能得到特征的独立划分还会得到该特征对依赖特征的贡献,最终特征节点的判断会综合原始投票及空间约束。 图8 脸部特征标记 图9 决策树依赖关系 例如当对下图中人脸特征点进行分类时,使用简单的随机森林方法,经过判断会将各个点进行标注,可以看到 红色的点,标注出的鼻子特征。如果利用依赖节点进行判断,鼻子的点会被局限在其他鼻子特征点的周围,进行叠加后,得到了这个结果。显然,对于此节点的判断,利用结构输出的方式,准确度更高了。 图10 结构化输出结果 4.随机森林总结 大量的理论和实证研究都证明了RF具有很高的预测准确率,对异常值和噪声具有很好的容忍度,且不容易出现过拟合。可以说,RF是一种自然的非线性建模工具,是目前数据挖掘算法最热门的前沿研究领域之一。具体来说,它有以下优点: 1.通过对许多分类器进行组合,它可以产生高准确度的分类器; 2.它可以处理大量的输入变量; 3.它可以在决定类别时,评估变量的重要性; 4.在建造森林时,它可以在内部对于一般化后的误差产生不偏差的估计; 5.它包含一个好方法可以估计遗失的资料,并且,如果有很大一部分的资料遗失,仍可以维持准确度。 6.它提供一个实验方法,可以去侦测变量之间的相互作用; 7.学习过程是很快速的; 8.对异常值和噪声具有很好的容忍度,且不容易出现过拟合; 随机森林的缺点: 1.对于有不同级别的属性的数据,级别划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的; 2.单棵决策树的预测效果很差:由于随机选择属性,使得单棵决策树的预测效果很差。 参考文献: [1] Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A., “Real-time human pose recognition in parts from single depth images,”Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on , vol., no., , 20-25 June 2011 [2] Dantone M, Gall J, Fanelli G, et al. Real-time facial feature detection using conditional regression forests[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2578-2585. [3] Heng Yang, Ioannis Patras, “Face Parts Localization Using Structured-output Regression Forests”, ACCV2012, Dajeon, Korea. 本文转自:,仅供学习交流

295 评论

穿G2000的恶魔

题名 题名相当于论文的标签,是简明、确切地反映论文最重要特点内容、研究范围和深度的最恰当的词语的逻辑组合,通常是读者最先浏览的内容,也是检索系统首先收录的部分,是体现论文水平与范围的第一重要信息。 总结起来有如下几个要求:(1)题文相扣,概念表达准确 题名要准确表达论文的内容和主题,恰当反映研究的范围和深度,与论文内容要互相匹配,紧扣-题要扣文,文要扣题。切忌题名过大,而应该限定到问题或者所使用的解决方法层面,例 如: 太笼统的题名:人脸识别研究; 限定到方法:一种基于感受野学习的人脸识别新方法。(2)题目长度适中,以及语序正确性 题目用词要简短精炼、太长或太短都不好。一般过长的题目中都有废话,包括但不限于“调查”“研究”以及一些冠词“a”等。我们在小学语文中就做过这样的练习,把一句比较长的话改短,又不改变其原来的意思。例如: 机器人定位与导航若干神经计算方法的研究; 因为导航包括定位,去掉冗余后:机器人导航若干神经计算方法的研究。 此外,题名像一条标签,忌用冗长的主、谓、宾语结构的完整语句,习惯上常用以名词或名词性词组为中心的偏正词组,一般不用动宾结构。英语题名,建议将表达核心内容的主题词放在题名的开头。例如: Age invariant face recognition and retrieval byCoupled auto-encoder。(3)注意术语的使用 术语在科技论文中大量出现,特别在通讯领域,拥有众多各类术语。很多术语即便是内行也难以辨别。因此,除非是众所周知的缩略语,否则不简写。例如: Image-to-Image Translation with ConditionalAdversarial Networks, 而非 Image-to—Image Translation with Conditional GAN, 因为GAN(生成对抗网络)这个词最近2年才出来,即便在机器学习领域,也有很多人对它很陌生。摘要 摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。 摘要具有独立性和自主性,能充分反映研究的创新点,拥有论文同等量的主要信息,即不阅读全文就能获得必要的信息。摘要字数通常不超过论文字数5%。摘要的基本结构及内容 摘要本质上是一篇高度浓缩的论文,其基本结构与论文的结构是对应的。摘要主要包括以下内容的梗概: (1)目的。研究工作的前提、目的、任务及所涉及的主题范围。 (2)方法——所用的理论、技术、材料、手段、设备、算法、程序等 (3)结果—观测、实验的结果和数据,得到的效果、性能和结论,创新与独到之处。摘要规范表达一般原则 1)摘要篇幅应尽量简短,切忌把应在前沿中出现的篇幅较长的内容写入摘要,而且不得有对论文的正式进行补充和修改的内容,尤其不要进行评价。 2)摘要的内容在正文应该出现,但不宜简单地重复。中文摘要多用第三人称来写,建议采用“对…进行了研究",“报告了…现状"等记述方法。 3)摘要要使用公知公用的规范的术语和符号,新术语应写出全称。一般不要使用公式和化学结构式。英文摘要规范表达 英文摘要时态的运用应以简练为佳,常用一般现在时、一般过去时,少用现在完成时、过去完成时,基本不用进行时和其他复合时态。 一般现在时用于说明研究目的、叙述研究内容、描述研究结果、得出研究结论、提出建议或讨论等。涉及公认事实、自然规律、永恒真理等,用一般现在时。 如: In order to study the rigidity coeficient.…, the stress and strain model is concluded.与之相反,一般过去时用于叙述过去某一时刻(时段)的发现、某一研究过程。 如The heat pulse technique was aplied to study two main tree species in July and August, 1996. a.介绍背景资料时,句子内容不受时间影响的普遍事实,应用现在时,对某种趋势的概述,用现在完成时。 b.叙述研究目的或主要研究活动,多使用现在时。 C.叙述实验程序、方法和主要结果常用现在时。 d.叙述结论或建议时可使用现在时,或may, should, could等助动词。关键词 关键词(key words)是为了满足文献标引或计算机检索及国际计算机联机检索工作的需要, 而从论文题名和正文中选出来的能够反映论文主题内容的词或词组。关键词应为规范的术语,通常位于摘要之后。 关键词:股票市场;在线股评;相关分析引言 一般来说,引言部分通常需要14页的篇幅。基本内容应包括研究背景、存在的问题和研究目的等。 通常先介绍范围较宽泛的一般性事实,为说明研究工作与过去工作的关系,须要回顾国内外研究历史(文献回顾或文献综述),并对研究情况横向比较,写明前人在本课题相关领域所做的工作及存在的空白或不足。 然后将重点逐渐转入与论文所探讨的问题有密切联系的主题,指出有某个问题或现象仍值得进一步研究,进而将焦点转到要探讨的研究问题上最后阐述研究目的,将作者的研究任务具体化,还可根据情况说明作者在已有工作基础上的贡献或创新。 对篇幅较长、结构复杂的论文,其引言的结尾部分还应有简略说明研究的主要结论以及论文构架的内容。引文规范写作原则 1)按写作要求和内容逐渐展开,不要将引言写成摘要的注释,不讨论,不重复摘要内容。 2)要慎重而有保留第叙述前人工作的欠缺及自己研究的创新,一般不用评价式的用语。 3)研究背景应该准确、简洁,不宜过于分散和琐碎。正文 正文写作过程中,不论小节层次,还是次小节层次,都应该遵循自上而下的细化方法。这种金字塔式的细化方法也应该体现论文的总体结构层次。也就是说,创建高层次的小节,用以描述搞层次的思想,然后使用低级别的章节层次结构描述更多的技术细节。每个段落都应该有一个中心论点,称为中心句或主题句,通常段 落以此为起始句。之后,围绕这中心论点进行更加细致的阐释。结论 结论可以是中心思想的重申、研究结果或主要观点的归纳,也可以是某些启示性的解释或考虑,以及在研究结果基础上所进行的预测等。主要包含: 1)本研究有什么新发现,得到了什么规律性的东西,解决了什么理论与实际问题,适用范围是什么? 2)研究的创新点,研究工作与他人已有研究成果的异同 3)研究的局限性、不足之处或遗留问题,以及可能的应用前景和进一步深入的研究方向。参考文献 参考文献是指为撰写论文而引用前人(包括作者自己)已发表的有关文献,是科技论文不可缺少的重要组成部分。 按规定,在科技论文中,凡是引用前人或他人(包括本人)已发表的文献中的观点、数据和材料等,都要在引用处予以标明,在文末(结论之后,,如有致谢,则在致谢之后)列出参考文献表称为参考文献的著录。一、参考文献著录的目的和作用 1)提高科学依据,表明广度和深度 著录参考文献反映出了科技论文作者的科学态度,并为论文提供了真实、广泛的科学依据。所著录的参考文献数量多少以及发表时间,就能衡量该科技论文研究的广度与深度。 2)区分研究成果,尊重他人成果 3)节省论文篇幅,避免资料堆积 适当引用参考文献,可避免过多介绍他人的工作,避免一般性表述和资料堆积。 4)便于读者查找,达到资源共享。二、著录的原则 1)只著录必要的最新的文献。 2)采用标准化的著录格式。各个期刊都有各自的规定,可在投稿前看相关期刊的文献著录格式。 3)一般只著录已公开发表的文献。三、标注方法 正文中引用文献的标注方法可以采用顺序编码或著者—出版年制,相应地文后的参考文献表按顺序编码或者著者-出版年制组织。 1)顺序编码制引文采用序号标注,参考文献表按引文的顺序列出在同一处引用多篇参考文献时,只需在方括号内全部列出,例如:用多种优化模型[3,5,12—15]. 参考文献做主语的时候,例如:与文献[6,7]中的分析一致。引用英文人名时,要注意文献人名表达形式的统一性和特殊性。如作者姓氏相同,则应写全名,如"LEE Y S"和"LEE C W”.

250 评论

sw634365102

这边有过敛技术 各类都能过 很全 需要的佳企鹅 衣玲午午酒尔尔酒尔酒

139 评论

相关问答

  • 人脸识别法律问题研究论文

    人脸识别法学论文题目书写:人脸识别就是通过观察比较人脸来区分和确定人的身份的.不被察觉的特点会使识别方法不令人反感,而且不容易引起人注意

    尹才宝贝 2人参与回答 2023-12-09
  • 人脸检测与识别论文

    dlib的安装很头疼我自己折腾了好几星期才成功 要讲的话很多所以写在了word里 链接:

    榜样的力量 3人参与回答 2023-12-11
  • 人脸识别图像处理研究论文

    随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像

    霸气甫爷 5人参与回答 2023-12-06
  • 基于特征脸人脸识别毕业论文

    计算机软件毕业论文的题目都好写啊

    快乐齐分享yeah 6人参与回答 2023-12-10
  • 人脸识别论文研究内容

    摘 要 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等,有着非常广泛

    走遍大中华 3人参与回答 2023-12-05