blueberry317
1、传感器技术:自动驾驶汽车上,前后左右装有认识周围环境、道路、交通状况的各种传感器。光学摄像头包括单摄像头、多摄像头,多普勒雷达包括短距离雷达、远距离雷达,还有激光雷达就是车顶上那个旋转的机器,GPS定位装置,等等,构成汽车认识环境的眼睛。2、芯片技术:也就是能够处理多个传感器采集的数据,并能整合的类似小计算机的超级芯片,使汽车的“总计算机”体积、成本大为减小,并能应用于汽车成为可能。否则汽车里将没有人坐的地方、老百姓也买不起这些庞大计算机群的汽车。3、操作系统:计算机控制系统将处理结果与操作硬件结合起来,实现加速减速、刹车停车、变向避让,以及人机对话等等。无人驾驶汽车具备了替代人工操纵的能力。4、网络技术:无人驾驶汽车要能上路,必须具备与互联网、局域网联络和识别功能,包括车与车的联络对话、车与卫星通讯、车与天气预报的联络、车与交通指挥网的联络,才能正确识别和选择道路、正确服从交通警察的指挥、正确决定通过交叉路口、正确避让危险和安全行车。总之,万里长征刚走了第一步,距离进入百姓家庭,还相当遥远。比如,那个车顶上老是旋转的东西就让人感到很不雅观。汽车制造商真的搞无人驾驶,自己把自己推给了芯片公司、计算机公司、网络公司,沦为装配厂的一员,也是很不情愿的事。
掬黛小公主
你好,车道线检测本质上是参数估计问题。在做实际工程时,要回答两个问题:1、车道线的Mathematical Model选什么?2、检测到的车道线到底属于什么类型?对于第一个问题,常用的车道线模型分为两类,参数化模型如Line/parabola/cubic, poly-line/spline, Clothoid, 只需若干个参数,即可描述整个车道线形状;也有基于数据的,如Support Vector Regression, Gaussian Process Regression,这种方法需要有正确数据的支撑,学习出相应的参数。用于车道线的参数估计问题并不简单,因为数据本身除了noise外,还有outlier。一个外点就能让传统的最小二乘法失效。Hough Transform, RANSAC, Least Trimmed Square, Bayesian Filter都可以用来鲁棒参数估计。对于第二个问题,检测到的车道线可以分为白实线、黄实线等,要用到分类的算法,我不是很懂,就不强答了。ps:使用相机检测车道线已经是ADAS的标配了,但是,但是,但是,对无人驾驶而言,相机对环境的敏感性,导致车道线检测有时候会失效。这个时候,最好使用激光传感器作为补充。pps:更进一步,为什么一定要检测车道线呢?Stanford的博士论文就没有涉及到车道线,他们把地面上的有效信息(包含车道线、人行横道、转向箭头、甚至裂缝)拼接为高精度地图,在线定位就行了。
1、传感器技术:自动驾驶汽车上,前后左右装有认识周围环境、道路、交通状况的各种传感器。光学摄像头包括单摄像头、多摄像头,多普勒雷达包括短距离雷达、远距离雷达,还
我给你发了全文不知怎么不让发。
本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读
1.专业定位 准确, 人才培养目标和模式明确 1.1专业定位准确, 办学思路明确 广州市政府已将汽车制造作为本市经济发展的支柱产业,总的年产量确定为 150万辆
时间序列好发论文。根据查询相关公开信息资料显示,从系统论的角度看,时间序列就是某一系统在不同时间(地点、条件等)的响应,围绕时间序列预测、分类、异常检测、表示学