• 回答数

    3

  • 浏览数

    125

24678happy
首页 > 职称论文 > 复合材料对环境的影响论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

umaumauhauha

已采纳

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 粉末冶金20 552 103 粉末冶金20 496 103 粉末冶金20 724 103 粉末冶金40 441 125 粉末冶金15 689 97 搅拌铸造20 350 98 无压浸渗30 382 125 表1 碳化硅颗粒增强铝基复合材料的力学性能[1] Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为,仅重。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 /ZL101 20 375 101 /ZL101A 20 330 100 /6061 25 517 114 /2124 25 565 114 / 20 226 95 /Al 26 387 112 -表2 金属基复合材料的力学性能[1] Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. .,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

220 评论

青藤6970

从全球金融危机到今天,我们面临了一个新的经济形势。“人类要生存、地球要降温”,“低碳经济”将改变我们的生产和生活方式。从六十年代起,玻璃钢复合材料作为一个轻质高强材料参与了国民经济各个领域的材料变革和创新;五十多年过去了,事实告诉我们,我们这个材料极具强大的生命力,UPR 树脂基复合材料产量已达到年产量400 多万吨,其中玻璃钢材料为190 多万吨,树脂浇铸石材及涂料280 多万吨。可以看到,复合材料战线上的广大员工、科技人员、老总付出了艰苦辛勤的劳动,作出了丰功伟绩,换来了玻璃钢复合材料产业璀灿的全面发展时期。今天,我们又处在能源结构的重大变革时期,要使我们的材料和产品适应全球“低碳经济”的形势,开发新一代的材料和产品将是我们的努力方向。这次,我和大家共同交流的题材是“面临全球低碳经济、加快材料和制品的技术创新、推进玻璃钢复合材料产业的全面提升”。以此抛砖引玉,形成共识。我向大家汇报的内容为三个部分:一、我国UPR 产业十年回顾和2009 年UPR 发展现状二、低碳经济和玻璃钢新兴市场三、我国风电市场和兆瓦级玻璃钢叶片一、我国UPR 产业十年回顾和2009 年UPR 发展现状2009 年我国UPR 行业经历了不平凡的一年,据中国UPR 行业协会初步统计,总产量达到153 万吨,比上年增长了。其中环氧乙烯基酯树脂达到 万吨,增长11%。全国四大民营企业亚邦、天和、福田、华迅等总量达到44 万吨,比上年增长11%,外资企业DSM、亚什兰、长兴、上纬、华日、昭和等总量达到12 万吨,比上年增长9%。江苏达到63 万吨,比上年增长5%。国内UPR 在其形成终端复合材料产业的主要流向为三大市场:UPR 基玻璃钢(FRP)市场,占了树脂总用量的55%,UPR 基人造石、工艺品、钮扣等市场,占了树脂总用量35%;UPR 基功能涂料,占了树脂总用量的10%。表二从应用区域分析,玻璃钢市场集中在江苏、上海、山东、广东、浙江、河北、天津、河南。人造石、工艺品、钮扣市场集中在浙江、广东、福建、山东、上海、江苏、四川。功能涂料市场集中在广东、上海、江苏、浙江、山东、河北。2008 年下半年全球金融危机的影响,曾一度出现的树脂滞销,到十月份后很快恢复增长。国家四万亿投资和十大产业调整振兴规划,对抵御金融危机影响,优化产业结构,持续增长发展的意义重大。钢铁、汽车、船舶、石化、纺织、轻工、有色金属、装备制造、电子信息、物流十大行业与玻璃钢产业关联密切。这十大产业依附着我国城市工业化、城乡一体化大规模经济建设的契机。这个契机又是以传统能源节能减排、新能源开发的低碳经济为目标展开的。玻璃钢复合材料以其自身创新为自己赢得了机遇和增长点。从国际市场看,2008 年全球金融危机使欧美经济陷入了困境,居高不下的原油一下跌到50 美元一桶,化工原材料出现了阶段性的市场过剩,价格走低;从国内看,玻璃纤维阶段性、结构性、区域性的失控发展,产量突破了年产200 多万吨,一半左右出口海外。金融危机袭来,出口受阻,玻璃纤维大量“倒向”国内,互相压价。化工原材料和纤维的大幅度跌价,使玻璃钢复合材料产业得到多少年以来从未有过的利好时机,为其低成本扩张提供了条件,从而也带动了树脂的增长。 2009 年,UPR 行业呈现了五大流向和热点:持续增长的玻璃钢复合材料行业的普及和提高,齐头并进,一方面拉动了低成本、通用型树脂的扩展,另一方面,新兴FRP 市场开发,推动了高性能、个性化的树脂增长。反映在邻苯型缠绕树脂、抽真空树脂、SMC/BMC 树脂、拉挤树脂、涤纶和对苯改性树脂的全面铺开。此外,高性能玻璃钢复合材料产品风机叶片、电器开关、压力管道、电力原器件、脱硫、高速列车内外装饰结构件、豪华游艇、工作艇、运动艇等的市场需求,又使间苯型、环氧乙烯基酯型抽真空树脂、SMC/BMC 树脂等快速增长,呈现了树脂市场的“两头热”。以天马、天津合材、费隆、华昌为代表的国企改制企业,以亚邦、天和为代表的国内大型民营企业,以华科为代表的国内科技人员组合企业,以DSM、华日、长兴、亚什兰、昭和、上纬为代表的外资企业,在国内UPR 大舞台上各领风骚,引领市场。 第二个流向和热点是浇铸型树脂发展迅猛。前几年,浇铸型树脂工艺品在面临海外市场疲软的情况下,急转国内建筑装饰装修市场,大批量进入楼堂馆所和高档商场,取得非常明显效果。浇铸型人造石的技术提升,已从面广量大的橱台面板走向机械化成型的人造大理石和人造石英石面板,大量应用于墙面饰材和地面材料。 福建、广东、山东等地的石材企业已开始从矿山开采转向用合成石制造。全国人造石材用树脂,09 年产量均超过前两年。传统浇铸产品聚酯纽扣、原子灰树脂、矿用铆固树脂等继续保持较好的增长势头。 第三个流向和热点是江苏、上海和天津,已成为国内近几年UPR 发展十分活跃的地区,并以技术创新和新产品开发引领国内UPR 及其复合材料市场的潮流,推进国内UPR 复合材料市场的普及和提高。2009 年该地区UPR 产量占到全国总量的一半以上,其中环氧乙烯基酯树脂95%的产量集中在上海和江苏。这个地区也是中外UPR 企业密集产区,既有早先进入的华日、DSM、亚什兰、长兴、昭和上纬等外资企业向国内传输海外成熟的产业市场,占有国内高中端市场优势。又有一批如天马、华昌、亚邦、费隆、华科、华润、天马瑞盛、富菱、兴合等企业。这里特别要提到的是国内UPR 行业的“亚邦”现象。2009 年亚邦公司生产了17 万吨树脂。亚邦凭着一个产业链的朴素情感,“有我也有你”、“有你也有我”,紧紧贴近市场和客户,大力开发低成本通用型树脂,高性能水晶树脂和石材树脂,为行业做出了贡献;产量连续五年蝉联全国第一。多少年来,亚邦在全国各地的销售公司由单一树脂销售发展为FRP 企业用原材料的“一站式”服务;亚邦各地的销售公司同时也是亚邦派出的分公司,在做好材料和服务同时,积极进行市场调查,他们可以在12 个小时内,快速反映全国各地FRP 产业的动态。亚邦在与市场下企业不断互动中做大做强。 第四个流向和热点是兆瓦级玻璃钢叶片的高性能要求,加速了UPR 和环氧乙烯基酯树脂的技术攀升。国内兆瓦级风电市场从2007 年进入一个高速发展期,年平均新增装机容量为600 多万千瓦,2009 年装机总容量达到2000 万千瓦。按 兆瓦推算,全年叶片总量达15990 片,树脂用量达5万多吨,加上外资风电企业出口叶片用树脂量可达到7 万多吨,其中50%为UPR 和环氧乙烯基酯树脂我国兆瓦级玻璃钢叶片专利技术是从德国和荷兰引进的,对纤维和树脂的性能标准高,并经过德国船级社GL 论证。两道“门槛”,对国内树脂和纤维企业提出了极为严格的要求。外资企业亚什兰、上纬、DSM 公司具备条件,“轻车熟路”,抢先了国内风电兆瓦级叶片市场。兆瓦级叶片从叶形设计、结构设计、铺成设计、模具技术到叶片制造是一极为复杂的系统工程,叶片运行期长二十年,对树脂企业是个“考验”。树脂企业是“尝试”兆瓦级叶片市场主要靠企业自主的技术实力。第五个流向和热点是国内玻璃钢复合材料装备制造的发展和提高。江、浙、冀、鲁等省的SMC、缠绕、拉挤、人造石、模压等设备及其模具设计制造不仅满足国内需求、,还X 量出口。装备技术的提升拉动了UPR 的性能、品质的提高和中、高档树脂需求的上升。2010 年,国内UPR 行业的发展空间依然很大。外资企业认为,中国是全球经济增长最快的国家,是全球最大的复合材料市场,他们对中国的发展充满信心。DSM、华日、亚什兰等正在进行扩能增产的布局,此外,雷可德也将在天津投产。全国的树脂产量巨头亚邦、天和、福田、华迅都在扩张。 国内UPR 发展趋势中还有一个不可忽视的现象是中西部、西南等地区将出现FRP 复合材料产业新的发展布局。据有关方面了解,围绕着西安、洛阳及晋中南地区,围绕东盟和我国贸易“零关税”的实施及大西南的建设,围绕甘肃、新疆化工原料配套基地、大西北建设和西亚出口等区域对玻璃钢复合材料的需求日益上升,不久会在这些地区出现UPR 和玻纤的规模型企业。到2009 年底,我国UPR 企业将超过160 家,有2/3 的企业是由过去乡镇企业转制为民营企业和私营企业。这部分企业中,有的积极引进技术人才和先进装备,使自身得到提高,逐步树立了品牌。但绝大多数企业,缺少技术,举步艰难,有的还掺做“捣浆糊”。这些企业,面临两条出路,一条是发展下游产品,还有一条是通过技术进步,提升企业。这两条路走不通,只有让市场淘汰你。可以预计,UPR 行业在三、五、八年这三个阶段,面临不断地整合和重组,树脂的增长方式将由产量的增长转变为品牌和质量的升级。二、低碳经济和玻璃钢新兴市场 “低碳经济”这个名词最早见诸于2003 年英国能源白皮书《我们能源的未来;创造低碳经济》。作为第一次工业革命的先驱和资源并不富裕的英国,充分意识到能源安全和气候变化的威胁。据有关资料报道,现在全世界每年二氧化碳排放量接近300 亿吨。二氧化碳的大量排放,造成全球气候变暖,海水倒灌。联合国政府间气候变化专门委员会警告称,气候变暖引起海平面每年上升18-59 厘米,按照这样的速度,到2100 年,全球一些低地岛国和全球三十二个气候变化最前沿的三角洲将会全部或局部被海水淹没。先进发达国家已把二氧化碳作为大气污染物质,相应增收碳排放税。 低碳经济,十年来全球经历了三个发展期。1997 年12 月,在日本京都召开的《联合国气候变化框架公约》缔约方第三次会议通过了限制发达国家温室气体排放量以抑制全球变暖的《京都议定书》。议定书规定,到2010 年,所有发达国家二氧化碳等6 种温室气体的排放量,要比1990 年减少。议定书对中国等发展中国家没有强制排放要求,并获得了170多个国家的批准。 第二次会议是2007 年12 月15 日,《联合国气候变化框架公约》第十三次缔约方大会在印度尼西亚巴厘岛举行,通过了“巴厘岛路线图”。主要内容包括:大幅度减少全球温室气体排放量,未来的谈判应考虑为所有发达国家(包括美国)设定具体的温室气体减排目标;发展中国家应努力控制温室气体排放增长,但不设定具体目标;应对全球变暖,发达国家有义务在技术开发和转让、资金支持等方面,向发展中国家提供帮助。 “巴厘岛路线图”首次将美国纳入谈判进程之中,要求所有发达国家都必须履行可测量、可报告、可核实的温室气体排放责任。另外,“巴厘岛路线图”还强调必须重视适应气候变化的技术开发、转让和资金三大问题。目标上,“巴厘岛路线图”提出了发达国家到2020 年,至少应在1990 年基础上减排25%至40%。第三次会议是2009 年12 月7 日-18 日,全球190 多个国家和地区代表达 万人,在丹麦歌本哈根召开了联合国气候变化大会。这次会议在减排问题上存在着很大的分歧,主要是减排的比例和资助金额上。美国、中国、巴西等国已是全球温室气体排放大国,中美两国在会上的表达让与会国看到了希望。会议前中国已在去年11 月27 日正式对外公布控制温室气体排放的行动目标,决定到2020 年单位国内生产总值二氧化碳排放比2005 年下降40%至45%;在此前,美国白宫宣布,将在哥本哈根气候变化大会上承诺2020 年前实现温室气体排放量在2005 年的基础上减少17%的临时性目标。哥本哈根会议上,20 多个发达国家私下起草了一个减排指标想获得通过,结果,遭到了来自发展中国家的反对;美国又以“船大掉头难”在具体减排上还不能立法。这次会议在具体减排指标上各说各有理,但最终形成共识,要加快环保技术的共享采用,加快全球减碳。 今天,我们来谈低碳经济,就是以低能耗、低污染、低排放为基础的经济模式,其实质是能源利用效率和清洁能源使用问题,核心是能源技术创新、制度创新和人类生存发展观念的根本转变。低碳经济的主流理解是指尽可能降低温室主体排放的经济体。其主要体现在:工业方面,高效率的生产和能源利用;能源结构方面,可再生能源生产将占据相当高比例;交通方面,使用高效燃料,低碳排放的交通工具,公共交通取代私人交通,并且更多地使用自行车和步行;建筑方面,办公建筑与家庭住房采用高效节能材料以及节能建造方式。归根到底,逐步减少单位GDP 的碳排放量。“低碳经济”不仅仅是一种新的理念,而是下一轮新经济的增长点。对于我国经济发展的前景来讲,以往的“中国制造”面临减排压力,减碳的方式将借助于生产工艺、生产工装、生产手段的技术升级和技术创新的 “低碳技术”,通过低碳技术的实施形成“低碳标准”,达到低碳高增长,低碳降成本。推进低碳技术与玻璃钢产业有着密切的联系。上世纪六十年代,玻璃钢产业以“代钢、代木”的朴素观念进入市场,玻璃钢的比强度高,大量代替钢材及金属材料;从节约资源出发,大量代替木材。随着玻璃钢产业数十年的市场运行,衍生了许多优异性能,突出在其可塑性、可设计性和多功能性。它的可塑性赋予了各类特色的成型工艺;它的可设计性,简化了传统的制造工艺,降低成本,实现了材料和性能的优化组合;它的多功能性表现为优良的电性能、化学性能、耐老化性能、耐疲劳性能、耐水性能、耐燃烧性能等。可以看到,未来产业推进的低碳技术达到低碳经济,离不开玻璃钢;同时,也给玻璃钢产业供了新的发展空间。 从我们目前所熟悉的产业,车辆、造船、水处理、化工防腐、建筑节能等都将面临全球低碳经济的制约,玻璃钢复合材料已经成为和未来实现产业低碳经济的重要选择材料。低碳排放的交通工具包括:轿车、客车、工程车、商用车、高速列车、船艇、飞机及航天航空器。青岛罗美威奥新材料制品有限公司是国内专业为高速列车车体配套轻型玻璃钢内外饰结构件的制造企业。公司成立多年来,积极采用国际先进产品标准,优选原材料,满足车体减重的要求和标准,首批配件成功应用于京津城际高速铁路上。目前该公司车体配件已接到青铁、唐铁、长铁的大量订单,供不应求。罗美威奥从低碳经济的观念出发,通过低碳技术的实施,达到了配件规定的低碳标准,成为国内轨道交通中实现高速低排放最优秀的配套企业。还被国际知名公司西门子认证授予“最高级供应商”的称号。再如广西桂林大宇客车公司与其玻璃钢大包围配套企业一起,一改过去“论斤买卖”玻璃钢产品的现象,共同开展以减重、低碳为目标的设计程序。交通领域里,我国船艇极具开发前景。钢质大船实现低碳排放,减轻自重已提到日程上,若干年后,达不到国际公约减排15%的要求,就进不了公海;我国玻璃钢游艇市场,通过碳排放设计规范,轻质夹层结构设计将逐步取代单板设计的偏重结构。游艇将变得更轻、跑得更快、能耗更低。水处理技术、水资源开发将是未来新兴玻璃钢产业的重要市场,河北中意复合材料有限公司与北京理工大学联合开发成功防海水浸蚀超大型玻璃钢管缠绕研究及移动式缠绕设备。一些企业还关注海水淡化技术中玻璃钢高压管的开发应用。 相比于发达国家,我们玻璃钢产业面向“低碳经济”的层面上明显滞后。随着低碳经济的观念不断深入人心,国内产业将需重新解读、重新认识,加快推进的必要性。国内传统出口产品还在“高碳经济”上徘徊,很可能将遭遇新一轮的“碳关税”的“绿色壁垒”。对于玻璃钢材料参与的各个产业,都要融入“低碳经济”、“低碳技术”、“低碳标准”的观念和措施,真正使我们玻璃钢材料成为各行各业配套的、性价比和强重比最优的轻质材料、功能材料和结构,让低碳真正和“玻璃钢经济”同步起来。 三、我国风电市场和兆瓦级玻璃钢叶片 开发清洁能源、发展风力发电是全球实现低碳经济的大事,我国风能装机总容量已跻身世界第四。发展兆瓦级风力发电,我国当时缺少成套技术,国家果断地组织企业引进欧洲成熟的技术,使我国风电行业成长极为迅猛。我国风电市场到底怎么样?前景如何?在这里我们剖析一些数字: 以上数据表明,我国风能资源非常丰富,已利用的并网风电总装机容量只占总资源的6‰,占国家电力总装机容量的,与欧洲风能利用发达国家丹麦、德国相比,差距甚远。此外,从我国目前风电并网看,将近有五分之一的风能设备未并网(2000-1613=387)。另从有关方面获悉,近几年,我国风电产业已令人担忧,兆瓦级整机企业达到80 多家,兆瓦级叶片制造企业70 多家,与先进发达国家对比和国内现状,显然有点“鱼目混珠”和“骑虎难下”。不久,国家发改委文件指出,风力发电也面临产能过剩。紧接着国家又下文取消风电设备国产化率70%的规定。风电产能过剩和70%的国产化规定取消,是国家对我国风电行业及时注射了清醒剂。目前,一方面是低水平的重复建设,另一方面是高效先进装备的中足,国家政策出台,使市场的自由选择更透明、更明朗、对促进我国风电产业健康发展具有现实意义和深远意义。 兆瓦级玻璃钢叶片其占整个风电设备成本的20%左右。叶片的设计、选材和工艺是决定风电装置性能与功率的主要因素,以及风力发电的单位成本。纵观全球叶片技术的发展趋势,并兼顾风机效能和降低成本两因素,叶片的制作正向大型化发展。单机功率愈大,每KW 的发电成本就愈低。因此全球风电设备都在向兆瓦级大功率和长叶片方向开发。典型的丹麦LM 公司是全球风力发电最大的集团,具有28 年的生产实践经验,其叶片年产达1 万片以上,已在中国天津和秦皇皇岛设厂。LM 公司也是全球唯一有In-House 测试能力的公司,可针对其叶片进行Full-Scale 的测试,所有的新设计叶片均可通过20 年运转状况的测试才能获准投产。这些测试项目包括静态、动态、雷击测试等,其测试设备中的激光扫描仪,更为叶片提供精确的几何数据。LM 公司目前生产最长的叶片为,是全球最长的叶片,重量为 吨,材质为环氧基玻纤增强复合材料,叶端等处采用碳纤,已按装在芬兰REpower 公司的5MW 海上风机上。LM 公司叶片制造技术包括多功能机械手铺设玻纤,以提高铺设进度25%;在螺栓的支撑力上进行创新,可增加叶片20%的长度;采用RIM 法缩短树脂渗透时间15-20%;以FRP 模具取代钢模,实现低成本。据有关信息,丹麦国家先进技术基金会拨款 亿丹麦克朗用于LM 公司进行创新型的新型叶片技术研究,该研究项目命名为“叶片之王”。是用FRP、C 纤维和热塑性材料的混合纱去制造叶片。这种纱铺进模具后,加热模具,塑料纱线融化,将会使叶片的生产时间缩短一半。在叶片设计上,LM 公司还在10 年前推出了一种新型具有弹性挠度的叶片概念,简称为预弯型叶片。该叶片在叶尖部分向外弯曲,使叶片在转动状态下,甚至处于强风时还能与塔体保持一定距离,避免叶片撞击塔架。预弯型叶片因其许可弯曲量变大,刚度相当,从而材料用量减少,重量减轻,而获取更多的风能。据有关方面透露,这种预弯型叶片与标准型叶片相比,风场在秒风速条件下即可起动。据了解,LM 公司与GE 公司合作的项目中对开发加长叶片增加电量进行案例分析测定,用 长的叶片替换了原有 风机上的 长的叶片,结果标明发电量增加7%,究其原因是其外圆扫风面积比内圆扫风面积增加了。可以认为,LM 的兆瓦级叶片的设计,制造技术是全球最先进,最富竞争力的。 在国内,中航惠腾靠不断创新,在风电叶片行业领先一步,自主技术、自行研发UPR基FRP 叶片的企业。其600kw-750kw 叶片占国内的90%以上,在开发 叶片上成功采用了高性能UPR。公司历年叶片装机容量占全国近一半的比重。该公司在寻求技术合作过程中,先后参与荷兰、德国、英国等九家风叶企业的技术交流与合作,专案确立了中国MW 级叶片在国内技术的自主化能力。惠腾叶片技术主要特点包括结构阻尼专利(降低振动)、叶尖专有技术(提供气动性能降低噪音)、镜面模具技术、快速常温固化技术、高精度平衡技术、高精度叶根定位技术等。以、6 吨重的叶片为例,每支重量误差在1kg 以下,重心偏差不超过10mm,因此,其启动风速只需秒,发电风速为3m/秒。该公司目前开发了2MW叶片,并根据风场要求,开展新的叶片设计工作。国内企业形成大批量生产的还有中复联众、北京中材FRP 研究院、上海FRP 院等。围绕风电设备配套的玻璃钢产品还有机仓罩和导流罩,国内采用最先进的抽真空和LRTM 工艺的有四家单位,山东德州地区的双一、华翼、株丕特三家公司和江苏的雅西路公司,产品大部为外商配套出口。常州华日新材公司最先为这些企业提供了性能优良的高强、低粘、低放热UPR。 为降低发电成本,除叶片设计外,材料和工艺成型日新月异,通过材料和工艺的选择达到轻量化和功能化,从而提高风能的效能。为了获得叶片最好的性价比,近几年,OCV 公司在全球叶片市场上推出高性能的Advantax 玻纤,该玻纤与E 玻纤相比,具有高的强度和模量,成功应用在兆瓦级叶片制造上。最近,OCV 公司又将S 玻璃纤维应用在更大的叶片上。S 玻璃纤维模量达到 ,比E 玻璃纤维高18%,强度高出33%,从技术角度,对于应用高强度高断裂应变的S 玻璃纤维在风力机叶片上更为先进。最近,PPG 公司向全球风能叶片行业推出了高性能的高强、抗疲劳玻璃纤维。据介绍,开发的HYBON2026 与目前市场上用与制作叶片的玻纤产品相比,拉伸强度高出20%,抗疲劳强度也高出数倍以上。国内有关企业在满足兆瓦级叶片的材料上也开展了大量的研制开发工作,重庆国际先后开发了ECT 和TM 高性能纤维,其销量占有国内兆瓦级叶片用玻纤用量的1/3,2009 年还向西欧出口高性能纤维达 万吨。此外,泰安的GMG、巨石的E6 等高性能纤维也进入了市场。叶片长度的不断增加使得轻质、高强的碳纤维在风力发电上应用不断扩大,大丝束碳纤维价格的下降成为风力机的首选结构材料,同样是34 米长的叶片,采用GF/UP 质量为5800公斤,采用GF/EP 质量为5200 公斤,采用CF/EP 质量为3800 公斤。因此,叶片材料开发的趋势是采用CF/EP,但同时也面临价格的压力。国外正在从原材料、工艺技术、质量控制等各方面深入研究降低成本。据有关方面信息了解,为了增加叶片的刚度并防止叶尖预弯部碰到塔架,在长度大于50m 的叶片将广泛使用碳纤维。轻质闭孔高强度泡沫是叶片材料中又一主要组成部分,应用于结构。据瑞典DIAB 公司资料报导可用于60 米长的风机叶片芯件。采用这种芯材及导流技术,可减少50%的周期时间,降低30%的劳动力成本,与敞开型技术相比,夹芯导流技术减少90%的苯乙烯散发,并使整个叶片达到轻质高强。DIAB 公司在中国昆山厂推出的PVC 轮廓板根据产品“量体裁衣”直接用到了叶片制作上,省时省料,降低成本。目前生产叶片泡沫结构的外资公司有Gurit天津公司、加铝上海公司等,国内常州天晟公司与有关科研院所合作,于去年开发成功结构泡沫。 随着海上风电的开发,对叶片的性能要求更高,轻质、高强、高弹、耐疲劳将推进新材料的不断产生。拜尔公司不久前推出商业化牌号Baytube 碳纳米管用于环氧树脂中,提升叶片的抗疲劳、抗冲击性和改善材料回弹性。该公司透露,采用纳米碳管于树脂中,将使叶片质量减轻20-30%,强度增大30%。在叶片成型工艺上出现了新的动向,中复联众公司已实践完成了预浸料成型工艺后,叶片制造由湿法成型改变为干法加热成型;德国西门子公司在叶片成型工艺上独创了整体成型。这些新技术的应用进一步提高了产品的尺寸稳定性,还缩短了制程时间。

176 评论

闪闪惹人爱ii

好长啊......看得眼花缭乱!!

195 评论

相关问答

  • 环境对性格的影响毕业论文

    [原创]情景相融 暗香浮动 -----------从《边城》看小说中境描写与人物形象塑造[watermark]情景相融 暗香浮动-----------从《边

    little1208 6人参与回答 2023-12-07
  • 地理对环境的影响论文范文

    地理教学模式对地理教学实践具有重要的指导意义,架起了地理教学理论与教学实践之间的桥梁。下面是我为大家整理的地理论文,供大家参考。 地理论文 范文 一:学伴互

    花花洒洒洒 4人参与回答 2023-12-09
  • 无损检测对环境的影响论文

    这样写:你总是说我的文字能让你感到,你怎么知道,字有如人的心思,随着人的情感在空气中游离。每次电话响就会追不及待的看看是否是你的来电,每次听见手机的提示音,我就

    书画人生 5人参与回答 2023-12-10
  • 复合材料学报影响因子

    光化学的定义有不同的表述。C. H. Wells认为,光化学研究的是“吸收了紫外光或可见光的分子所经历的化学行为和物理过程”。N. J. Turro则认为“光化

    S素年錦時 3人参与回答 2023-12-10
  • 复合材料对环境的影响论文

    碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说

    24678happy 3人参与回答 2023-12-08