小可憐兒
2013 年《Science》杂志评选的当年十大科学突破中,癌症免疫治疗研究成果位列其首!2018 年的诺贝尔生理医学奖授予了开启肿瘤免疫治疗新航向的美国免疫学家詹姆斯 · 艾利森(James P. Allision)和日本教授本庶佑(Tasuku Honjo)!自此,人类与癌症的斗争进入肿瘤 – 免疫(immuno-oncology,IO)时代!
以免疫检查点(immune checkpoint)抑制剂和 CAR-T 细胞治疗为代表的新的免疫疗法在临床实践中创造的许多奇迹!这些研究让人们相信癌症不再是不治之症!
虽然癌症的免疫治疗研究方兴未艾,但其实人们很早就认识到免疫与肿瘤的密切关系:
1. 某些肿瘤的发生由慢性炎症而起; 2. 肿瘤的发展、转移需要逃脱免疫系统的严密监视; 3. 免疫细胞是构成肿瘤生长微环境的重要组分,某些免疫反应会被肿瘤细胞利用而成为促进肿瘤生长、扩散的因素,有可能在肿瘤治疗,尤其是免疫治疗当中发挥负面影响。
因此免疫与肿瘤的关系研究,特别是肿瘤微环境中的免疫调节机制的研究也成为当今 IO 时代的重要内涵。不管是癌症免疫治疗还是肿瘤发生发展、肿瘤微环境的机理研究,这些复杂的、系统性的研究当然都离不开动物模型的应用。在此就一一细数 IO 研究中用到的小鼠模型。
1. 自发、诱导的小鼠肿瘤及其移植瘤模型
正常的小鼠在大约一年半的生命周期里也有可能罹患癌症,不同品系的小鼠自发肿瘤的机率和类型不同,体现出遗传因素与癌症易感性的关联。为了更有效地获得小鼠肿瘤模型,也可以采用人为的物理(如紫外线、放射线照射)、化学(天然致癌物质和致癌化合物)和生物(病毒等)的方法诱导小鼠产生肿瘤。可以诱导小鼠肿瘤的致癌物有多环芳烃类、亚硝胺类、偶氮染料类、黄曲霉毒素等。实验室常用的诱导化合物包括MNU(N – 甲基- 亚硝基脲)、DEN(二乙基亚硝胺)、4NQO(4 – 硝基喹啉- 1 – 氧化物)等,可诱导小鼠发生肝癌、食管癌、肺癌、膀胱癌等多种肿瘤,为癌症发生的机理研究提供了有用模型。
研究者也从小鼠的肿瘤建立起很多可在体外培养传代的肿瘤细胞系,如结肠癌细胞CT26-WT、黑色素瘤细胞B16,肝细胞癌细胞H22,淋巴瘤细胞A20 等,这些肿瘤细胞系不仅为癌细胞的体外生物学研究提供了工具,而且可以移植到遗传背景相同、不会发生免疫排斥的其它小鼠体内,建立移植瘤小鼠模型。小鼠自发或诱发的肿瘤也可以剖取下来,分割为小组织块,移植到其它小鼠体内,制作成异体移植瘤模型(allograft)。对于近交系小鼠品系建立的异体肿瘤移植模型,由于小鼠之间的遗传背景相同,其实相当于自体移植(autograft),又可称为同基因型(syngeneic)肿瘤移植模型。移植瘤模型由于可以大量制备,荷瘤鼠之间均一性好,因而非常适合抗肿瘤药物筛选和评价的体内实验。因为荷瘤鼠体内有着正常的免疫系统,这种模型可以用来研究肿瘤和免疫系统的相互作用,也可以进行一些肿瘤免疫治疗的概念性(proof of concept)、机理性(mechani *** )研究。
2. 基因工程小鼠肿瘤模型
自发或诱导肿瘤模型都带有相当的随机性、不确定性,产生的肿瘤类型、特征也经常不能满足研究的需要。随着基因工程技术的发展成熟,对小鼠进行遗传修饰—包括转入新基因、删除基因、基因替换等成为可能。
研究发现,在小鼠上过表达某些致癌基因或者敲除某些抑癌基因可以导致小鼠易发肿瘤。于是利用基因工程手段来研发各类小鼠肿瘤模型的工作越来越多。比如 p53 基因敲除的小鼠,纯合体一般在 3、4 个月内发生各类肿瘤,杂合体在 6 个月之后也多发肿瘤。组织特异性地敲除 Pten 基因,则导致这种特定的组织中高发肿瘤。过表达 Ras、Myc 等这些癌基因的转基因鼠也易发各种肿瘤。人们可以把在临床研究中发现的与肿瘤相关的基因突变通过基因工程手段,如转基因、基因编辑等方法复现在小鼠基因组上,验证这种突变的致癌作用,以及探寻该种基因突变驱动的肿瘤的生物标志物(Biomarker)、诊断和治疗方法等。
基因修饰小鼠模型(geically engineered mouse model, GEMM)产生的肿瘤也可以移植到相同遗传背景的其它小鼠体内,建立异体移植瘤模型,这被称为 GDA( GEM-derived allograft)模型。
这里有个非常好的例子:
GEM 肿瘤模型的例子即 KPC(LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre)小鼠。 KrasG12D 是人类肿瘤中常见的 Kras 基因的活化突变体,Trp53R172H 则是 p53 基因的突变体。在这两个基因编码区和启动子之间插入 loxp-Stop-loxp 序列,然后将这两个基因构件转入小鼠基因组,制作出双转基因小鼠。由于「Stop」序列的存在,这两个基因并不会被转录。当双转基因小鼠再与Pdx-Cre 小鼠配在一起,Pdx 驱动表达元件使Cre 重组酶得以在胰腺组织特异表达,切除一对loxp 之间的「Stop」序列,KrasG12D 和Trp53G12D 基因开始表达,其结果是小鼠在2、3 个月内几乎都有胰腺肿瘤发生,并有肿瘤转移现象。 KPC 小鼠为胰腺癌这一癌症之王的研究提供了绝好的研究工具。
3. 分子嵌合小鼠肿瘤模型
小鼠模型虽然可以为人类肿瘤的研究提供有用工具,但有时并不理想,因为毕竟人和小鼠在遗传、生理 / 病理方面存在着巨大差异。对于 IO 研究,肿瘤和免疫系统都可能存在种属差异,生物标志物、抗肿瘤药物靶点、药物反应性、治疗有效性都有不同之处。
通过基因工程的方法,包括经典的转基因技术、基于胚胎干细胞基因打靶的基因敲出/ 敲入技术以及新兴的基因编辑技术将人源基因导入小鼠基因组,可以建立基因「人源化」小鼠。这种小鼠体内表达某种研究者感兴趣的人特有的蛋白,成为在分子水平上的人鼠嵌合体。这种人源化可以遗传给后代,使其成为有特殊用途的新品系小鼠。基因人源化小鼠在许多领域得到应用,包括肿瘤免疫治疗研究。
免疫检查点(immune checkpoint)是近年来发现的利用自身免疫功能抗肿瘤的重要药物靶点。针对 PD1/PDL1 这一对 「免疫刹车」信号分子的单抗药物已被证明具有强大的抗肿瘤效用。由于这些抗体药物都是针对人的靶点设计和筛选的,它可能只识别、结合人的 PD1、PDL1,就无法用动物做临床前体内评估实验。
为了解决这个问题,可以通过基因编辑技术将小鼠的PD1、PDL1 基因替换为人的基因,这样小鼠的细胞上就表达人的PD1、PDL1,可以用来试验抗人PD1、PDL1 抗体药的作用。在做基因编辑的设计时,为了保证这些信号分子与小鼠细胞内信号转导分子之间的相互作用正常进行,一般只替换蛋白分子的胞外区基因片段,使其表达人的抗原靶位,而保持小鼠源的胞内区。
以人源化PD1 小鼠的应用为例,评价抗PD1 抗体药的抗肿瘤效果时,先在这种小鼠上接种一个表达PDL-1(这个分子在人鼠之间同源性较高)的同背景肿瘤细胞(如小鼠结肠癌细胞系MC38),然后就可以用荷瘤模型给药来评估有无抑制肿瘤的效果。如果药物可以阻断 PD1/PDL1 之间的结合,解除免疫抑制,免疫系统活化,重新开始攻击肿瘤,就可以观察到小鼠肿瘤的生长抑制或消退。
基因人源化小鼠应用于肿瘤免疫治疗研究的另一个例子是在双特异性抗体(bispecific antibodies)的体内筛选、评估试验中。有一大类抗肿瘤双特异性抗体药的设计原理是它既可以结合一种人的肿瘤抗原,又可以结合人的T 淋巴细胞上的CD3 分子,这样双特异性抗体可以把T 细胞连接到肿瘤细胞上,同时激活T 细胞,从而来攻击杀伤肿瘤。由于肿瘤抗原、CD3 分子这两个靶点都是人的,在普通小鼠模型上无法评价这类双特异性抗体。一般CD3 上的靶点在其ε亚基上,因此可以将CD3E 基因人源化,然后在其T 细胞上表达人CD3E 的小鼠上接种表达有人的特定肿瘤抗原的小鼠肿瘤细胞,这个体系就可以用来测试评估双特异性抗体的抗肿瘤效果。
4. 人源肿瘤小鼠移植模型
将人的肿瘤移植给小鼠,可以建立人源化肿瘤小鼠模型,前提是小鼠受体必须是免疫缺陷的,否则将被免疫排斥。最早的人源肿瘤模型在裸鼠上建立成功。裸鼠为先天性无胸腺的小鼠品系,体内缺乏 T 淋巴细胞。这说明 T 细胞在异种排斥中起著至关重要的作用。后来发现在免疫缺陷程度更高的小鼠上人源肿瘤更易生长,如 T、B 淋巴细胞联合缺失的 scid 小鼠、Rag1/Rag2 敲除小鼠等。
目前,最为广泛使用的作为人源化受体的高度免疫缺陷小鼠品系是NOD prkdcscidIl2rgnull 小鼠,即非肥胖型糖尿病小鼠NOD 遗传背景,SCID 基因突变,Il2 受体的gamma 链亚基敲除的小鼠,由日本的CIEA 研发的被称为NOG,由美国Jackson Laboratory 研发的被称为NSG,由北京维通达公司生物技术公司研发的被称为NPG。此类小鼠之所以被选择,是因为:
(1)NOD 背景的小鼠存在许多先天性免疫功能的缺陷,如巨噬细胞对人源细胞吞噬能力弱(由于其不同于其它品系小鼠和更接近人的Sirpα分子的结构);补体系统缺失;树突状细胞功能弱等。
(2)prkdc 基因在B 细胞抗体基因重排及T 细胞受体基因重排过程中均发挥不可替代作用,这个基因突变导致T 细胞、B 细胞发育阻滞,使机体细胞免疫、体液免疫功能联合缺失。
(3)Il2rg 基因是多种白介素受体的共同亚基,它缺失后多种免疫功能受损,尤其是 NK 细胞活性完全丧失。这些特点结合在一起,使 NPG 类小鼠成为迄今为止免疫功能缺失最严重,最适合接受人源细胞移植的小鼠品系。
人源肿瘤移植模型可以分为CDX(cell line derived xenograft)模型和PDX(patient derived xenograft)模型,前者是由已经建立的各种肿瘤细胞系接种小鼠,后者是由临床获得的病人的肿瘤组织直接移植给小鼠建立肿瘤模型。 PDX 模型因为更多的保留着病人肿瘤的「原生态」,包括肿瘤细胞的异质性、肿瘤的微环境,因而更具有临床相关性。 CDX 模型的特点则是容易获得,永久传代,每个细胞系都有较多数据积累,一致性较高,便于多地点比较研究……。
肿瘤模型一般为皮下接种,因皮下瘤便于观察和测量。也可作腹腔内、肾包膜下以及「原位」接种,如肝癌组织细胞接种于肝,血液瘤注射入血液,乳腺癌接种于乳腺管等。原位接种使肿瘤微环境更接近真实,更易发生转移现象。 PDX、CDX 肿瘤模型都广泛应用于肿瘤学研究和抗癌药物的体内筛选、评估实验。然而,由于使用免疫缺陷动物建立肿瘤模型,体内没有正常免疫系统,使得这种模型「先天不足」。免疫细胞是肿瘤微环境中的重要成分,对肿瘤的发生、发展、治疗效果都扮演着至关重要的作用。建立既具有人的免疫系统又有人的肿瘤的动物模型是研究者长久以来的一个追求。
5. 人源免疫系统 – 肿瘤小鼠模型
人源化动物模型(humanized animal model)指携带有人的功能性基因的动物或移植了人的细胞、组织、器官的动物,后者也称嵌合体动物。即人源化包括基因水平的人源化以及组织细胞水平的人源化。导入人源成分之后,就使某些原来只能在人体上进行的体内实验可以在动物上进行,解决了人体实验的伦理诘难。
在IO 研究当中,如前面讲到,个别或少数基因的人源化小鼠可以在某些方面获得应用,但总体而言实验仍然建立在小鼠的肿瘤和小鼠的免疫系统之上,依然无法反映人体系统的情况和反应。
NPG 这类高度免疫缺陷小鼠的出现,使向小鼠移植人的造血 / 免疫系统成为可能。目前,人源化造血/ 免疫系统小鼠可以归为三大类:移植成体外周血单个核细胞(PBMC)或分离的免疫细胞的模型;移植来自人的脐带血、胎肝的造血干细胞( HSC)的模型;联合移植来自同一供体的胸腺、胎肝、骨髓造血干细胞(Bone、Liver、Thymus-BLT)模型。这些模型各有自身的特点,也各自存在一些不尽人意的缺点(见下表)。
PBMC 移植 NPG 类小鼠建立的模型,因为含有成熟的免疫细胞,因而可以进行某些要求人的免疫功能的体内实验。移植之后这些成熟的免疫细胞中的 T 淋巴细胞会受到小鼠异种抗原 *** 而增殖,其它种类细胞则维持较低含量,有的细胞寿命有限而从体内消失。所以 PBMC 移植模型的人源细胞以 T 细胞为主。移植的人源免疫细胞,主要是T 细胞,还会对受体小鼠产生免疫攻击,发生发生移植物抗宿主反应(GvHD),并在大约数周之后引起小鼠死亡,所以PBMC 模型可供实验的窗口期较短,只适合于短期性研究。
造血干细胞是所有造血和免疫细胞的共同祖细胞。 HSC 移植 NPG 类小鼠之后可以定植于小鼠骨髓,并不断产生各类造血、免疫细胞,如 T 细胞、B 细胞、NK 细胞、髓系细胞等。由于其免疫细胞是在小鼠体内「从头」发育出的,对小鼠宿主产生耐受,所以不出现 GvHD 现象,模型存活一年还可以在血中检测到人源细胞稳定存在。这种模型的缺点是发育出的 T 细胞功能较弱。这是因为 T 细胞需要在胸腺中完成「education」过程,T 细胞受体形成 MHC 限制性。人源T 细胞的前体在小鼠胸腺内完成发育,可能既表现小鼠MHC 限制性,也表现HLA 限制性,造成与人源细胞相互作用类似于异体(allo-)或异种(xeno-)排斥反应。
为了解决T 细胞在人源化小鼠体内不能正常发育的问题,又发明了BLT 模型,就是将胎胸腺和胎肝小组织块合并移植到小鼠肾包膜下,再移植分离自同一个体的胎肝或骨髓的造血干细胞。这样人源前体细胞可以迁移到肾包膜下生长的胸腺类器官中发育出自身 MHC 限制性的功能性 T 细胞。 BLT 模型被认为是人的免疫功能最完善的人源化小鼠模型。但是,由于 BLT 模型的人源组织材料取自流产胎儿,来源非常有限,且面临很大的伦理争议,因而应用受到限制。
将 PDX/CDX 肿瘤移植模型跟人源化免疫系统模型结合起来可以用于人类肿瘤免疫方面的研究,如 PBMC 模型加肿瘤模型、HSC 模型加肿瘤模型。这些模型已经在肿瘤与免疫系统的相互作用研究以及肿瘤免疫治疗研究当中获得应用,但是也有一些问题未能解决。
PBMC 移植再加肿瘤的模型,因为模型的稳定期短,肿瘤接种时机需要精确把握。更关键的,因为很难获得相同 HLA 配型的 PBMC 和肿瘤,所以 PBMC 对肿瘤存在异体排斥。排斥作用太强则肿瘤不能在模型上生长。所以需要筛选、匹配合适的 PBMC 和肿瘤供体来建立共移植模型。
HSC 移植加肿瘤的模型出现肿瘤被排斥的情况较少,但也需要对 HSC 供者跟肿瘤做一定筛选匹配。 HSC 移植加肿瘤的模型作为肿瘤免疫模型有几点必须考虑:
(1)人 T 细胞在小鼠胸腺完成发育,大部分表现小鼠 MHC 限制性,视人 MHC 为异己;
(2)APC 细胞对 T 细胞的「Prime」作用存疑;
(3)T 细胞对人肿瘤的反应类似一种异体 / 异种排斥反应,反应有可能强有可能弱,不能以 HLA 配型与否预测;
(4)T 细胞对肿瘤的反应可能以 CD8 + 细胞毒反应为主。
虽然因为MHC 匹配问题,HSC 移植模型发育出的T 细胞功能不太正常,但因为其免疫调控机制很多还是存在的,可以被激活和发挥功能,所以这类模型有可能应用于肿瘤免疫微环境研究、immune checkpoint inhibitor 抗癌药物评价、双特异性抗体抗癌药物评价(不依赖MHC 识别)、CAR-T 治疗肿瘤的研究(也不依赖MHC 识别)以及作为因子释放综合征(cytokine release syndrome)模型,等等。
不可否认的是现有人源化免疫系统小鼠模型仍然存在诸多缺陷,不能满足肿瘤免疫研究中的需要。为此正在研发下一代的人源化小鼠,包括MHC 基因人源化小鼠(表达HLA 的小鼠),转入人源细胞因子如IL-2、IL-3、GM-CSF、SCF 等以能更好支持功能性免疫细胞发育的小鼠。使用自身 MHC 分子敲除的 NPG 类小鼠制作 PBMC 人源化小鼠则可以延缓 GvHD 的发生,拓展了此类模型应用的窗口期。
文章来源:维通达
题图来源:站酷海洛
julystar77
结肠癌 (Colorectal cancer, CRC ) 是人类 健康 的致命性威胁,2020年CRC占全球癌症病例数的10%,占癌症死亡人数的 (仅低于肺癌) ,预计2040年全球新发CRC病例数将高达320万 【1】 。CRC发病率的攀升主要原因在于不 健康 生活与饮食方式的蔓延,研究发现西方饮食 (高糖高脂肪饮食) 能通过作用于胰岛素及酮体代谢通路影响肠道干细胞的增殖与功能,增强肠道祖细胞的致瘤性,抑制抗肿瘤免疫 【2】 。此外,动物蛋白尤其是红肉摄入过多会导致罹患CRC的风险增加,其原因可能与加工过程中所产生的胆汁酸、杂环胺、多环芳烃和N-亚硝基化合物有关 【3】 。也有研究发现,超重和肥胖、缺乏运动、吸烟与饮酒也会增加CRC的患病风险。
虽然诱发CRC发生的饮食与营养因素日渐明确,但目前我们对于预防CRC发生或干预CRC进展的饮食策略仍有待研究。尽管禁食和热量限制在动物模型中具有潜在的抗癌作用,但这类营养干预措施在人类,尤其是在高危型CRC患者中难以广泛实施。因此,研发抑制CRC发生并能缓解癌症恶化的新的饮食干预策略至关重要。
生酮饮食 ( KDs ,ketogenic diets) 是一种以“超低碳水,高脂肪,适量蛋白”为特点的饮食方式,KDs能够迫使机体燃烧脂肪而非碳水化合物,诱导酮体类物质,如 乙酰乙酸 (AcAc) 和 β-羟丁酸 ( BHB ) 的产生。KDs最早用于抗癫痫治疗,近年来由于其减肥和改善糖代谢等效果而日渐流行,但KDs对肝脏和心血管系统等的副作用使其充满争议 【4】 。
2022年4月27日,宾夕法尼亚大学Perelman医学院 Christoph A. Thaiss 和 Maayan Levy 教授合作在 Nature 杂志发表了题为 β-Hydroxybutyrate suppresses colorectal cancer 的研究文章,利用CRC自体动物模型进行饮食筛选,发现 KDs可以显著抑制肠隐窝干细胞的增殖与CRC的进展,进一步研究揭示了酮体类物质BHB作为KDs的代谢效应物,能通过与其表面受体Hcar2的互作诱导具有抑癌作用的转录因子Hopx的表达,进而抑制了肠上皮增生与CRC的进展。
为筛选能够抑制CRC发生和进展的饮食干预策略,作者固定饮食中的蛋白含量,通过调整糖类和脂肪比例设计了6种不同的饮食模型 (图1 a,b) 。不同饮食饲喂并通过AOM/DSS诱导小鼠CRC发生后,作者发现 随着食物中脂肪含量的上升,CRC的发生被显著抑制 (图1 c) ,而KDs饲喂能延长CRC小鼠的长期生存期 。不仅如此,KDs也能抑制Cdx2creERTApcfl/flCRC模型小鼠及已发生CRC小鼠的肿瘤进展,从KDs饲喂恢复到正常饮食会导致CRC复发。可见, KDs不仅能够预防小鼠CRC的发生,也能起到抑制CRC进展的效果。
图1 不同饮食干预条件下小鼠CRC模型的建立及其对CRC进展的影响
接下来,作者探究了KDs抑制CRC发生和进展的分子机制。之前研究证明AOM/DSS诱导CRC模型是通过促进肠道免疫反应实现的 【5】 ,作者发现KDs处理后CRC模型小鼠的Il17a水平显著下降,肠道免疫反应受到抑制。此外,KDs会通过抑制Lgr5+干细胞的功能及肠道隐窝干细胞的增殖抑制肠上皮细胞的周转。KDs饲喂还能够导致酮体合成量 (乙酰乙酸和β-羟丁酸) 异常升高,作者因此探究了KDs对肠上皮细胞周转的影响是否是通过促进酮体产生而介导的。利用小鼠肠道类器官模型,作者发现乙酰乙酸 (AcAc) 并不会影响类器官的生长,而β-羟丁酸 (BHB) 能够浓度依赖性地抑制类器官生长,并能够阻滞肿瘤类器官的增殖 (图2) 。因此, KDs能通过诱导体内效应代谢物BHB的含量抑制肠隐窝干细胞的增殖,并阻滞CRC的进展 。
图2 β-羟丁酸(BHB)能够抑制肠道类器官生长与CRC进展
为进一步确定BHB是否能抑制in vivo状态下的肿瘤生长,作者在 Cdx2CreERTApcfl/fl小鼠的正常日粮中添加了BHB,并评估了BHB对CRC发展的影响。首先,作者发现与KDs的效果类似,添加BHB可以抑制CRC的进展。其次,AOM/DSS诱导CRC模型小鼠的日粮中添加BHB同样能够抑制肠上皮增生及肿瘤进展。第三,利用渗透微型泵 (osmotic mini-pumps) 施加BHB以模拟KD饲喂条件下BHB的内源性释放,同样可以抑制Cdx2CreERTApcfl/fl小鼠的肿瘤生长。由此可见, BHB作为KDs的代谢效应物,能够在体内和体外条件下有效抑制CRC的进展。
明确了KDs通过BHB抑制CRC发生的功效后,作者进一步探究了BHB发挥抗肿瘤作用的内在机制。对BHB处理后的小鼠类器官进行RNA-seq分析后发现BHB处理会导致基因表达模式的全局性改变,其中一种抑制肿瘤发生的转录因子 Hopx (表达集中于结肠隐窝基部,肠道干细胞分裂缓慢的标志物) 的表达水平显著上升。进一步分析BHB与Hopx的关系后,作者发现上调野生型 (或肿瘤) 类器官中 Hopx 的表达会抑制CRC的进展,而抑制 Hopx 表达会阻滞BHB诱导的抗肿瘤效果。此外,KDs饲喂后小鼠结肠组织中 Hopx 表达发生特异性上调,诱导结肠肿瘤会进一步诱导 Hopx 的表达,而KDs抑制CRC进展的功能在Hopx缺陷型小鼠中丧失。另一方面,虽然热量限制或补充BHB都能降低小鼠的CRC负荷,但在 Hopx 缺陷条件下BHB无法发挥抑癌功能,但此时热量限制抑制CRC发生仍然有效,表明补充BHB和葡萄糖限制是通过不同的下游信号通路来抑制肠道肿瘤生长的。对 AOM/DSS处理的野生型和Hopx缺陷小鼠的结肠组织进行RNA-seq分析后,作者发现 Hopx 缺失会导致一系列促增殖基因的表达显著上调。因此, KDs诱导体内代谢效应物BHB上调后,会进一步诱导 Hopx 表达而抑制上皮增生与CRC进展。
那么,KDs饲喂及BHB处理是如何诱导 Hopx 表达的呢?之前研究发现BHB能够抑制组蛋白去乙酰化酶 (HDACs) 的表达 【6】 ,作者推测BHB可能是通过抑制HDACs活性而促进 Hopx 表达的。虽然BHB处理或KDs饲喂会抑制HDACs活性,且抑制HDACs活性能够抑制类器官生长,但是抑制HDACs所导致的转录谱变化与BHB处理诱导的转录改变存在显著差异, Hopx 表达仅能被BHB所诱导。其他实验证据也确认虽然BHB能够抑制肠上皮细胞中的HDACs,但 HDACs受抑制后并不会驱动 Hopx 表达,也不是Hopx介导的抑制CRC进展的原因 。由于Hopx在肿瘤发生中存在过度甲基化趋势 【7】 ,因此作者又检测了BHB是否是通过影响Hopx甲基化状态而诱导Hopx表达的。通过对BHB处理或KDs饲喂小鼠的肠上皮细胞进行亚硫酸氢盐测序,作者发现虽然BHB或KDs处理后的甲基化模式发生了明显改变,但 Hopx 位点的甲基化水平并未发生变化,DNA甲基化模式的改变并不能介导BHB对 Hopx 表达的调控。既然两种最可能的调控方式行不通,作者又设计了基于类器官的CRISPR筛选以确定BHB的下游基因,作者鉴定到BHB受体Hcar2或Ffar3等潜在靶标,进一步验证后发现BHB处理无法抑制 Hcar2 缺陷型类器官的生长,且Hcar2会抑制BHB所诱导的 Hopx 表达上调。与之相比,其他筛选到的BHB潜在下游基因对BHB诱导的 Hopx 表达无明显影响。因此, BHB通过表面受体Hcar2诱导Hopx表达并抑制肠上皮增生。
最后,作者探究了BHB-HOPX通路在抑制人肠上皮增生方面是否同样有效。结果表明,BHB 抑制了 健康 供体和CRC患者来源的类器官的生长,且BHB处理也会导致人类类器官中 HOPX的表达上调。利用多种CRC细胞系进行体外实验发现,BHB能够特异性抑制HT-29细胞的增殖,有趣的是HT-29 细胞是唯一一种同时表达HCAR2和HOPX的CRC细胞系,可见, HCAR2和HOPXs也是人源CRC细胞响应BHB处理的关键因子 。此外,作者分析了血清 BHB含量与CRC患者结肠HOPX表达水平的关系,发现患者血液中的BHB水平与HOPX表达呈正相关,而与细胞周期进展有关基因的表达成负相关。因此, 与小鼠模型类似,在人类肠上皮细胞中BHB能够促进HOPX表达并拮抗人肠上皮增生与CRC进展。
综上所述, 本研究发现生酮饮食是结肠癌防治的潜在有效策略,生酮饮食能够上调体内代谢效应物β-羟丁酸的含量,而β-羟丁酸与受体Hcar2互作后通过诱导抑癌因子Hopx的表达,抑制了肠道隐窝干细胞的增殖与肠上皮周转,最终阻滞了结肠癌的发生和进展 。
本研究也提示我们 β-羟丁酸等酮体类物质不仅可以作为大脑等重要器官的能量来源,还能作为一种信号分子,在营养缺乏时抑制外周组织的生长。 此外, 生酮饮食由于其多重副作用而备受争议,但通过探明生酮饮食发挥抗癌作用的代谢和调控机制而有针对性地控制体内特定效应分子(如β-羟丁酸等)的含量,能够达到“取其精华,去其糟粕”的效果,这也是“精准医疗”的重要发展方向。
今天报道的这篇文章从中文标题 (《生酮饮食抑制结肠癌发生的机制》) 来讲是有点噱头的,但并没有脱离这个文章传递的核心,如果根据 Nature 论文的题目把新闻标题换成更朴实一点《β-羟丁酸抑制结肠癌发生的机制》,恐怕有兴趣点开阅读的读者会少不少,所以也提醒我们要通过新闻报道看本质。
言归正传,“酮体”包含乙酰乙酸、β-羟丁酸和丙酮,这也就是为什么把β-羟丁酸和生酮饮食关联起来。对于研究代谢同行来说,β-羟丁酸 (β-Hydroxybutyrate ) 并不陌生,他们看 Nature 文章的第一反应笔者不得而知( 或许有同行交流的时候会说我要是做这样的工作能发到 Nature 吗) 。关于β-羟丁酸与肿瘤的关系,研究的文章不少了,但是发表在同行十分认可的所谓高水平期刊上的文章是不多的,比较有影响的是 Wen-Hwa Lee ( 李文华) 课题组2017年在 Nature Communications 杂志上报道了在小鼠模型中β-羟丁酸能够促进乳腺癌的发生发展【1】;2018年, Cancer Research 发表了一个摘要,提到β-羟丁酸能够降低胶质瘤细胞中PD-1的表达 (换句话说就是β-羟丁酸可以有利于抑制胶质瘤了) 【2】;2022年3月,来自法国的一个组在 EMBO Journal 上报道了β-羟丁酸促进胰腺癌的发生发展【3】,其它的可能没怎么听过的杂志上的工作就不一一列举了。什么意思,β-羟丁酸对各种肿瘤的作用有正的也有反的,机制总是各有不同,所以多一篇β-羟丁酸抑制结直肠癌就不会大惊小怪了。那么好了,既然β-羟丁酸在肿瘤中的作用是多种多样的,那么换个词问,生酮饮食和肿瘤什么关系过去有研究吗?答曰:不要太多,当然所谓的分子机制层面也是很多解释。
此前围绕β-羟丁酸似乎只发过一篇CNS,即是2012年发表在 Science 上的文章报道了β-羟丁酸可以作为HDAC (组蛋白去乙酰化酶) 的抑制剂【4】,所以2012年后发表的很多围绕β-羟丁酸的研究工作或多多少都关联上了HDAC的调控,这里顺便提一下,2016年 赵英明 课题组在 Mol Cell 上发文章报道组蛋白上可以发生β-羟丁酸化修饰进而影响基因转录调控【5】,那么β-羟丁酸对基因转录调控的影响多了新的解释,2019年 黄波 课题组在 Nat Cell Bio 上发表文章报道β-羟丁酸作为一种表观遗传调控因子在记忆性T细胞的发育、维持和长期存活中发挥重要作用的机制就是通过组蛋白β-羟丁酸化修饰【6】。
具体回到今天这篇 Nature 来看,说实话做的还是挺好的,也相当细致了,排除了上面说的几种机制,搞清楚了在结直肠癌模型中β-羟丁酸的新的作用机理,通过β-羟丁酸的受体Hcar2 (该受体是已知的又名GRP109A,早有报道,本文还是通过类器官用CRISPR全基因组筛选了一下,该筛选是必要还是锦上添花?) 然后诱导转录因子 Hopx (用类器官模型然后RNA-seq分析锁定该基因) 最终调控肿瘤发生发展。细节就不再赘述了,正文介绍部分讲的很清楚了。
总结这篇文章,请问β-羟丁酸或生酮饮食对肿瘤的调控研究很新吗?答案肯定是不新的。机制做的很新吗?好像是,研究方法顺藤摸瓜似乎搞清楚了一条路 (受体是已知的, Hopx 是RNA-seq富集分析看到的) 。那么好了,做个传统的题目,如果连机制再不系统不新点XX杂志可能都发不了吧。
笔者还是觉得该论文从摘要就开始强调生酮饮食和肿瘤,而不是上来就说β-羟丁酸如何如何,如果一开始就总结一下β-羟丁酸的进展,好比笔者前面梳理的那些背景,估计投到顶刊会被秒拒,然而换个说法把β-羟丁酸和生酮饮食紧密联系起来作为着眼点,然后首尾呼应,画龙点睛,是否觉得文章高大上了一些?
再次回到这篇中文介绍的中文题目《生酮饮食抑制结肠癌发生的机制》,相比于老老实实用《β-羟丁酸抑制结肠癌发生的机制》做标题,从新闻传播角度考虑孰优孰劣?
【1】Huang, Chun-Kai, et al. "Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate." Nature Communications (2017): 1-13.
【2】Woolf, Eric C., et al. "The ketone body β-hydroxybutyrate alters expression of PD-L1 on malignant glioma cells but does not directly affect T cells in vitro." (2018): 2739-2739.
【3】Gouirand, Victoire, et al. "Ketogenic HMG‐CoA lyase and its product β‐hydroxybutyrate promote pancreatic cancer progression." The EMBO Journal (2022): e110466.
【4】Shimazu, Tadahiro, et al. "Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor." Science (2013): 211-214.
【5】Xie, Zhongyu, et al. "Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation." Molecular Cell (2016): 194-206.
【6】Zhang, Huafeng, et al. "Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development." Nature Cell Biology (2020): 18-25.
原文链接:
制版人:十一
参考文献
1. Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology , 14 (10), 101174.
2. Dekker, E., et al. (2019). Colorectal cancer. Lancet , 394, 1467–1480.
3. Aykan, N. F. (2015). Red meat and colorectal cancer. Oncology reviews , 9 (1).
4. O'Neill, B., & Raggi, P. (2020). The ketogenic diet: Pros and cons. Atherosclerosis , 292, 119-126.
5. Grivennikov, S. I., et al. (2012). Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature , 491 (7423), 254-258.
6. Shimazu, T., et al. (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science , 339 (6116), 211-214.
7. Yamashita, K., et al. (2013). The homeobox only protein homeobox (HOPX) and colorectal cancer. International journal of molecular sciences , 14 (12), 23231-23243.
童鞋你好!这个估计需要自己搜索了!当然了,如果果真找不到追问一下!网上基本很难找到免费给你服务的!我在这里给你点搜索国际上常用的外文数据库:----------
关于抗肿瘤药物的研究进展的药学论文现在是论文高期 需 可LIAN我
1Kimm HT,Van Allen CM.Hemophilia:prevention and treatmentwith ovarian extract.JA
肿瘤的病因 etiology of tumor 多数肿瘤,尤其是恶性肿瘤的病因十分复杂。某些情况下可以是一种具体的病因在起作用,如聚氯乙烯致肝血管瘤,射线引起白
1.传统抗肿瘤药物[2]根据目前临床上使用的抗肿瘤药物的作用机理,可以大致将其分为四类:直接作用于 DNA,破坏其结构和功能的药物;干扰 DNA 合成的药物;抗