• 回答数

    4

  • 浏览数

    289

QINGCHUN曲终人散
首页 > 职称论文 > grana期刊最新论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

一佛爷一

已采纳

细胞膜(cell membrane):又称质膜.细胞表面的一层薄膜.有时称为细胞外膜或原生质膜.主要结构成份一般是蛋白质占60%-80%,类脂占20%-40%,碳水化合物约占5%(分布在类脂和蛋白质之间). 细胞膜把细胞包裹起来,使细胞能够保持相对的稳定性,维持正常的生命活动.此外,细胞所必需的养分的吸收和代谢产物的排出,都要通过细胞膜.所以,细胞膜的这种选择性的让某些分子进入或排出细胞的特性,叫做选择渗透性.这是细胞膜最基本的一种功能.如果细胞丧失了这种功能,细胞就会死亡. 细胞膜除了通过选择性渗透来调节和控制细胞内,外的物质交换外,还能以"胞饮"和"胞吐"的方式,帮助细胞从外界环境中摄取液体小滴和捕获食物颗粒,供应细胞再生命活动中对营养物质的需求.细胞膜也能接收外界信号的刺激使细胞做出反应,从而调节细胞的生命活动.细胞膜不单是细胞的物理屏障,也是在细胞生命活动中有复杂功能的重要结构. 原始生命向细胞进化所获得的重要形态特征之一,是生命物质外面出现了一层膜性结构,即细胞膜。细胞膜位于细胞表面,厚度通常为7~8nm,由脂类和蛋白质组成。它最重要的特性是半透性,或称选择性透性,对进出入细胞的物质有很强的选择透过性。细胞膜和细胞内膜系统总称为生物膜,具有相同的基本结构特征。 根据细胞的生理生化特征,曾先后推测质膜是一种脂肪栅、脂类双分子层和由蛋白质-磷脂-蛋白质构成的三夹板结构。同时电镜观察也证实质膜确实呈暗-明-暗三层结构。随后冷冻蚀刻技术显示双层膜中存在蛋白质颗粒;免疫荧光技术证明质膜中蛋白质是流动的。据此等人在1972年提出生物膜的流动镶嵌模型,如图7-4-3和7-4-4所示,,结构特征是:生物膜的骨架是磷脂类双分子层,蛋白质分子以不同的方式镶嵌其中,细胞膜的表面还有糖类分子,形成糖脂、糖蛋白;生物膜的内外表面上,脂类和蛋白质的分布不平衡,反映了膜两侧的功能不同;脂双层具有流动性,其脂类分子可以自由移动,蛋白质分子也可以在脂双层中横向移动。 细胞膜的基本结构:(1)脂双层:磷脂、胆固醇、糖脂,每个动物细胞质膜上约有109个脂分子,即每平方微米的质膜上约有5x106个脂分子。(2)膜蛋白,分内在蛋白和外在蛋白两种。内在蛋白以疏水的部分直接与磷脂的疏水部分共价结合,两端带有极性,贯穿膜的内外;外在蛋白以非共价键结合在固有蛋白的外端上,或结合在磷脂分子的亲水头上。如载体、特异受体、酶、表面抗原。(3)膜糖和糖衣:糖蛋白、糖脂细胞器分为:线粒体;叶绿体;内质网;高尔基体;核糖体;溶酶体;液泡;中心体。 线粒体是细胞进行有氧呼吸的主要场所。又称”动力车间”. 叶绿体是绿色植物进行光合作用的场所。 内质网是蛋白质合成和加工的场所。 高尔基体对来自内质网的蛋白质加工,分类和包装的场所。 核糖体是生产蛋白质的场所。 溶酶体分解衰老,损伤的细胞器,吞噬并杀死入侵的病毒或细菌。 液泡是调节细胞内的环境,是植物细胞保持坚挺。含有色素. 中心体与低等植物细胞、动物细胞有丝分裂有关。由两个相互垂直的中心粒构成. 内质网(endoplasmic reticulum) 一般真核细胞中都有内质网,只有少数高度分化真核细胞,如人的红细胞以及原核细胞中没有内质网。在电镜下可以看到内质网是一种复杂的内膜结构,它是由单层膜围成的扁平囊状的腔或管,这些管腔彼此之间以及与核被膜之间是相连通的。内质网按功能分为糙面内质网(smooth ER)和光面内质网(rough ER)两类糙面内质网上所附着的颗粒是核糖体,它是蛋白质合成的场所。因此糙面内质网最主要的功能是合成分泌性蛋白质,膜蛋白以及内质网和溶酶体中的蛋白质。所合成蛋白质的糖基化修饰及其折叠与装配也都发生在内质网中。其次是参与制造更多的膜。 光面内质网上没有核糖体,但是在膜上却镶嵌着许多具有活性的酶。光面内质网最主要的功能是合成脂类,包括脂肪、磷脂和甾醇等。 核糖体(ribosome) 核糖体是蛋白质合成的场所,它是由rRNA和蛋白质构成的,蛋白质在表面,rRNA在内部,并以共价键结合。核糖体是多种酶的集合体,有多个活性中心共同承担蛋白质合成功能。而每个活性中心又都是由一组特殊的蛋白质构成,每种酶或蛋白也只有在整体结构中才具有催化活性。 每一细胞内核糖体的数目可达数百万个,游离核糖体合成细胞质留存的蛋白质,如膜中的结构蛋白;而附在内质网上的核糖体合成向细胞外分泌的蛋白质,合成后向S-ER输送,形成分泌泡,输送到高尔基体,由高尔基体加工、排放。 高尔基体(Golgi apparatus) 由一系列扁平小囊和小泡所组成,分泌旺盛的细胞,较发达。在电镜下得到确认的高尔基体是由单层膜围成的扁平囊和小泡,成堆的囊并不像内质网那样相互连接。在一个细胞中高尔基体只有少数几堆,至多不过上百。 (1)是细胞分泌物的最后加工和包装的场所,分泌泡通过外排作用排出细胞外 (2)能合成多糖,如粘液,植物细胞的各种细胞外多糖。 溶酶体(lysosomes) 溶酶体是由由高尔基体断裂产生,单层膜包裹的小泡,数目可多可少,大小也不等,含有60多种能够水解多糖,磷脂,核酸和蛋白质的酸性酶,这些酶有的是水溶性的,有的则结合在膜上。溶酶体的pH为5左右,是其中酶促反应的最适pH。 根据溶酶体处于,完成其生理功能的不同阶段,大致可分为:初级溶酶体,次级溶酶体和残余小体。 溶酶体的功能有二:一是与食物泡融合,将细胞吞噬进的食物或致病菌等大颗粒物质消化成生物大分子,残渣通过外排作用排出细胞;二是在细胞分化过程中,某些衰老细胞器和生物大分子等陷入溶酶体内并被消化掉,这是机体自身重新组织的需要。 线粒体(mitochondria) 线粒体具有双层膜结构,外膜是平滑而连续的界膜;内膜反复延伸折入内部空间,形成嵴。内外膜不相通,形成膜腔。光镜下,线粒体成颗粒状或短杆状,横径~8um,细菌大小。线粒体是细胞内产生ATP的重要部位,是细胞内动力工厂或能量转换器。线粒体具有半自主性,腔内有成环状的DNA分子和70S核糖体,它们都能自行分化,但是部分蛋白质还要在胞质内合成。 叶绿体(chloroplas) 高等植物叶绿体外行如凸透镜,具有双层膜结构,两膜间没有联系。在叶绿体内部存在复杂的层膜结构,它悬浮于基质中,这些层膜又叫类囊体(thylakoids),与叶绿体内膜可能无联系。类囊体也是双层膜结构,呈扁盘状。类囊体通常是几十个垛叠在一起而成为基粒(grana),类囊体膜上有光合作用的色素和电子传递系统。 在绿色植物和藻类中普遍存在的叶绿体是光合作用场所。同时叶绿体也有自己特有的双链环状DNA,核糖体和进行蛋白质生物合成的酶,能合成出一部分自己所必需的蛋白质,因此叶绿体内共生起源假说为许多人所认可。 微体(microbodies) 含有酶的单层膜囊泡状小体,与溶酶体功能相似,但所含的酶不同于溶酶体。微体在短时间内帮助多种物质转换成别的物质。过氧化物酶体(peroxisomes),是存在于动植物细胞的一种微体,其中所含的一些酶可将脂肪酸氧化分解,产生过氧化氢。 乙醛酸循环体(glyoxisome)存在与富含脂类的植物细胞中,其中一些酶能将脂肪酸核油转换成酶,以供植物早期生长需求。 液泡(vacuole) 在成熟的活的植物细胞中经常都有一个大的充满液体的中央液泡,是在细胞生长和发育过程中由小的液泡融合而成的,是单层膜包围的充满水液的泡。液泡中含有无机盐、氨基酸、糖类以及各种色素等代谢物,甚至还含有有毒化合物,并处于高渗状态,使细胞处于吸涨饱满的状态. 细胞骨架(cytoskeleton) 在真核细胞的细胞质中普遍存在由蛋白质纤维组成的三维网架结构—细胞质骨架,蛋白质纤维包括有微管,微丝和中间纤维三种,它们通过通过磷酸化和去磷酸化而具有自装配和去装配功能,这也是信息传递过程。细胞质中各种细胞器,酶和很多蛋白质都是固定在细胞质骨架上,使之有条不紊地执行各自的功能。 细胞质骨架网络系统对于细胞形态构建,细胞运动,物质运输,能量转换,信息传递,细胞分化和细胞转化等起着重要的作用。 微丝(microfilaments) 微丝(肌动蛋白纤维)是指真核细胞中由肌动蛋白组成的骨架纤维。微丝的功能:肌肉收缩,微绒毛,应变纤维,胞质环流和阿米巴运动,胞质分裂环。 微管(microtuble) 微管由α,β两种类型的微管蛋白亚基组成,两种蛋白形成微管蛋白二聚体,是微管装配的基本单位。微管是由微管蛋白二聚体组成的长管状细胞器结构,微管壁由13个原纤维排列组成,微管可装配成单管,二联管(纤毛和鞭毛中),三联管(中心粒和基体中)。微管的功能:维持细胞形态,细胞内运输,鞭毛运动和纤毛运动,纺锤体和染色体运动,基粒与中心粒。 中间纤维(Intermediate filaments) 中间纤维蛋白合成后基本上都装配成中间纤维,游离的单体很少。在一定生理条件下,在植物细胞中也存在类似中间纤维结构。中间纤维按其组织来源和免疫原性可分为6类:角蛋白纤维,波形纤维,结蛋白纤维,神经纤维,神经胶质纤维和核纤层蛋白。 中间纤维与微管关系密切,可能对微管装配和稳定有作用。此外,中间纤维从核纤层通过细胞质延伸,它不仅对细胞刚性有支持作用和对产生运动的结构有协调作用,而且更重要的是中间纤维与细胞分化,细胞内信息传递,核内基因传递,核内基因表达等重要生命活动过程有关。 鞭毛、纤毛和中心粒(flagellum, cilium, centrioles) 细胞表面的附属物,功能是运动。鞭毛和纤毛的基本结构相同,主要区别在于长度和数量。鞭毛长但少,纤毛短,常覆盖细胞全部表面,两者的基本结构都是微管。基部与埋藏在细胞质中的基粒(9(3)+0)相连。中心粒,结构与基粒相似,埋藏在中心体中,许多微管都发自这里。 胞质溶胶(cytosol) 细胞质中除细胞器以外的液体部分。富含蛋白质,占细胞内的25~50%;含有多种酶,是细胞代谢活动的场所;还有各种细胞内含物,如肝糖原、脂肪细胞的脂肪滴、色素粒等。

320 评论

霸州楚楚吊顶

恒星是巨大的“工厂”,生产宇宙中的大部分元素。但是恒星产生的东西会随着时间的推移而改变。 发表在MNRAS上的两篇新论文阐明了最年轻一代的恒星最终将如何停止向宇宙贡献金属。

作者都是澳大利亚ARC三维全天空天体物理学卓越中心(ASTRO 3D)的成员。他们分别在蒙纳士大学、澳大利亚国立大学(ANU)和太空望远镜科学研究所工作。

“我们知道元素周期表的前两种元素--氢和氦--是在大爆炸中产生的,”该论文的第一作者Amanda Karakas说 。“随着时间的推移,大爆炸之后的恒星会产生更重的元素。”

这些 “富含金属”的恒星,像我们的太阳一样,向太空喷出它们的产物,随着时间的推移,丰富了银河系的组成。

这些天体直接影响到我们,因为大约一半的碳和所有比铁重的元素都是由像太阳这样的恒星合成的。例如,地球上大约90%的铅是在低质量恒星中制造的,这些恒星也产生锶和钡等元素。

但是这种产生更多金属的能力会根据恒星诞生时的成分而改变。Giulia Cinquegrana说:“在恒星的气体中仅仅引入一丁点更多的金属,就会对它们的进化产生真正大的影响。”她的论文使用先前的论文中的模型来研究富含金属的恒星的化学输出。

Cinquegrana说:“我们发现,在气体中初始金属含量达到一定的阈值时,恒星将在其一生中停止向宇宙输送更多的金属。”

太阳诞生于大约45亿年前,是一颗典型的“中年”恒星。与第一代恒星相比,它是 “富含金属 ”的,其重元素含量与银河系中心的许多其他恒星相似。

“我们的论文预测了较年轻的恒星(最年轻的一代)的演变,这些恒星的金属含量比太阳高七倍,” Karakas说。

“我的模拟显示,这种真正高水平的化学富集导致这些恒星的行为相当怪异,与我们认为在太阳中发生的情况相比,”Cinquegrana说。

“我们的超级富含金属的恒星模型显示,它们仍然膨胀成为红巨星,并继续以白矮星的形式结束生命,但到那时,它们并没有排出任何重元素。金属被锁在白矮星的残余物中,”她说。

“但恒星不断向宇宙添加元素的过程意味着宇宙的构成一直在变化。” Karakas说:“在遥远的未来,元素的分布看起来将与我们现在在太阳系中看到的情况非常不同。”

100 评论

carryme2015

S蛋白(CP或S)为血清中一种α单链糖蛋白,分子量83kDa。SP的主要调节作用是可与C5b~7的亚稳态结合部位竞争靶细胞膜脂质,通过形成亲水性的SPC5b~7(简写为S5b~7)复合物,而使C5b~7失去膜结合活性。这样,便可保护补体活化部位邻近的细胞免遭偶然的攻击。这种亲水性的SC5b~7还可集资与1个分子的C8和3个分子的C9结合,分别形成SC5b~8和C5b~(9)3复合物,并C9聚合形成孔道,从而可保护补体活化部位邻近的细胞免于遭受补体的攻击而损伤。SP与C8和C9的结合部位为这两种分子中富含半胱氨酸的功能功能区。电镜下观察,SC5b~(9)3复合物呈一楔形结构,SP位于楔形的宽部可掩盖补体蛋白的疏水区,从而封闭MAC的膜结合部位。此外,2~3个分子的SP与C5b~7与C5b~8复合物的结合,还可使这些复合物易溶,出现亲水向疏水转换。SP也参与凝血过程,通过干扰抗凝血酶Ⅲ对凝血酶的来活而保护凝血酶。 编码人SP基因定位于第17号染色体的长臂上,其cDNA已克隆成功。经过序列分析表明,其与具有细胞粘附作用的玻璃粘连蛋白(vitronectin)的序列完全相同,已证明二者属同一蛋白。

248 评论

mon也是部长

400多种古细菌和细菌有S-层蛋白质,该蛋白质能在菌体表面自装配为规则晶格的单分子表面层(S-层),与菌体以非共价方式连接.S-层作为菌体面对环境的最外层屏障,具有保护、分子筛、维持菌体形状、细胞识别和黏附、毒力因子等功能,是菌体适应周围环境的重要结构.随着遗传、结构、装配和功能等方面研究的逐渐深入,人们意识到了S-层蛋白质潜在的应用价值.其基因的可操作性,独特的自装配特性及其单分子晶体层的结构都很有应用前景,目前已经应用在异源蛋白质的分泌性表达、表面展示和纳米科技等方面.

111 评论

相关问答

  • 财讯期刊最新期刊

    财讯期刊还是不错的,财讯期刊是正规期刊,是经国家新闻出版总署批准,面向国内外公开发行的“全国综合性教育理论学术期刊”。《财讯》(CN:44-1617/F)是一本

    角落小泰迪 3人参与回答 2023-12-11
  • 细胞期刊最新期

    自然杂志近年来发展的很快,出版集团还出版了其它专业杂志如《自然医学》,《自然免疫学》,《自然遗传学》,《自然细胞生物学》,《自然神经科学》、《自然生物学技术》、

    凯大大! 2人参与回答 2023-12-07
  • grana期刊最新论文

    细胞膜(cell membrane):又称质膜.细胞表面的一层薄膜.有时称为细胞外膜或原生质膜.主要结构成份一般是蛋白质占60%-80%,类脂占20%-40%,

    QINGCHUN曲终人散 4人参与回答 2023-12-11
  • 最新期刊

    比较常见的有《环球科学》《科学焦点》《科学世界》和《博物》。1《环球科学》《科学美国人》的中文版,以全世界的科学发展动态为着眼点介绍当今的科学发展前景和趋势,是

    蹦蹦跳跳321 4人参与回答 2023-12-06
  • quality期刊最新论文

    the real estate market situation of A city Market changes, the operators a matte

    霸气Annie姐 3人参与回答 2023-12-08