饭团爱上飞
这次分享的文章是近期由,中科院何祖华研究员和美国俄亥俄州立大学/中国农业科学院植物保护研究所王国梁教授受邀在 Annual Review of Plant Biology 撰写题为 “Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding” 的综述论文。文章分为两大部分,第一大部分1-3小节,主要是论述分子层面的抗病过程,第二大部分是4-5小节,提出了如何将BSR应用到育种过程中去,我主要关注的是第一大部分,后面的部分仅作了解。
Broad-spectrum resistance(BSR)是一个优良的性状因为它可以对超过一种病原菌或同一病原菌的大多数病原小种产生抗性。本文报道了不同物种BSR基因的鉴定和功能解析工作,并讨论了BSR在分子育种中的应用。
作物面临的病害有真菌,卵菌,细菌,病毒和线虫。
Broad-spectrum resistance(BSR): 植物能抵抗两种病原菌或对同一病原菌的多个病原小种产生抗性的。
Resistance(R) genes: 对病原菌产生抗性的基因,如编码表面受体(receptor-like kinases)的基因和细胞内受体NLRs(能直接或间接地检测同源的病原菌效应子)
Quantitative trait locus(QTL): 一段特定的染色体区域或负责生物体群体表型中数量性状变异的遗传位点。
Species-nonspecific broad-spectrum resistance(SNS BSR): 植物对多于一种病原菌产生抗性。
Race-nonspecific broad-spectrum resistance(RNS BSR): 植物对同一病原菌的多个小种产生抗性。
育种家早先使用单显性或隐性的R基因,因为它们效应强且容易选择。大多数基因具有对单一或少数病原菌的特异小种产生抗性;然而,致病菌种群的突变和毒力的转移使这些抗特异小种的R基因有效性很短,而由QTLs控制的部分抗病性通常没有小种特异性。尽管在同一遗传背景结合单一R基因和QTLs对抗病性是有效的,但是技术上是有难度的并且耗时长。因此,选择BSR就被提上了日程。
PTI和ETI。
PAMPs通常对于病原菌的生存是至关重要的并且进化上是保守的。植物的PRRs是膜定位的RLKs或RLPs。来自拟南芥,水稻和马铃薯的五个PRRs被报道是SNS BSR(T1)。拟南芥第一个RLK-PRR是FLS2,对包括假单胞菌在内的具有鞭毛蛋白细菌都有SNS BSR;在其他物种中异源表达FLS2增强了其对一些细菌的抗性。细菌的另一种PAMP,elf18,是EF-TU N端的抗原表位,被EFR识别,也作为一种SNS BSR蛋白来调节拟南芥对细菌病害的抗性。Xa21是作物中第一个RLK-PRR R基因,对Xoo和Xoc的大多数小种都有抗性。在柑橘、拟南芥、香蕉中异源表达Xa21增强了对多种细菌病害的抗性。水稻中包含Lysin motif的蛋白LYP4和LYP6是双功能PRRs,可以感知细菌肽聚糖和真菌几丁质,激活对细菌和真菌的抗性。拟南芥中RLP-PRR RLP23与LRR受体激酶SOBIR1和BAK1形成三聚体来调节微生物蛋白坏死和乙烯诱导(Necrosis and ethylene-inducing peptide 1-like protein,NLP)的免疫反应。因此可以说明,识别广泛的微生物模式的PRRs可能特别适合于设计作物免疫。
首次鉴定的SNS-BSR NLR蛋白是与拟南芥抗性相关的RRS1(RESISTANCE TO RALSTONIA SOLANACEARUM1)与RPS4(RESISTANCE TO PSEUDOMONAS SYRINGAE4),它们作为双重的R基因系统,对细菌和真菌都产生抗性。RPS4与RRS1成对工作,触发超敏反应(HR),对含有AvrRps4的丁香假单胞菌产生抗性。除了AvrRps4, RRS1/RPS4还能识别来自青枯菌的效应蛋白PopP2。此外,RRS1和RPS4都是抵抗真菌病原菌炭疽病所必需的,可能是通过识别一种未知的效应子。
Wall-associated kinases(WAKs): 植物的一类受体激酶,包含胞外的聚半乳糖醛酸结合结构域,跨膜结构域和胞内的Ser/Thr激酶结构域。
Defense-signaling genes: 在信号转导通路中发挥功能的基因,与病原菌的识别和防卫激活联系起来。
Pathogenesis-related(PR) genes: 在防卫响应下游的基因,负责抗菌类物质的产生。
NHR(Nonhost resistance): 植物对所有非适应性病原菌的抗病性;植物对大多数可能致病的微生物表现出的最常见的抗病性。
总共42个防卫信号基因被认为参与到SNS BSR抗性中(Supplemental Table1)。
MAPKs是众所周知的防御信号蛋白,它将防御信号从免疫受体传递到下游蛋白;例如,OsMAPK5负向调节水稻对细菌性病原菌 细菌性古枯病和真菌稻瘟病的抗性。OsMPK15负调控PR基因表达和ROS积累,osmpk15敲除突变体增强了对Xoo和多个稻瘟病小种的SNS BSR。
除了MAPKs,其他的激酶,如RLKs和RLCKs,也在SNS-BSR中发挥功能。两个水稻的WAKs,OsWAK25和OsWAK91,对于SNS BSR抗稻瘟病和白叶枯是重要的。
蛋白质泛素化介导的降解也在SNS BSR中发挥重要作用。水稻U-box E3基因Spl11(SPOTTED LEAF11)编码了细胞死亡的负调控因子,而spl11突变体增加了对稻瘟病和Xoo的SNS BSR。敲除SPIN6(SPL11-interacting Protein 6)也增强了植物对这两种病原菌的抗性。另一个多亚基E3泛素连接酶OsCUL3a (Cullin3a)通过靶向和降解OsNPR1(NONEXPRESSER OF PATHOGENESIS-RELATED 1)负调节细胞死亡和对稻瘟病和白叶枯的SNS BSR。OsBAG4是人BAG(Bcl2-associated athanogene)在水稻中的同系物,它与RING结构域的E3泛素连接酶EBR1(Enhanced Blight and blast)形成一个模块,控制程序性细胞死亡和SNS BSR对稻瘟病和白叶枯的抗性。
表观调控SNS BSR。如水稻中沉默HDT701(HISTONE H4 DEACETYLASE GENE 701)增强了对稻瘟病和白叶枯的抗性。
转录因子是植物免疫信号中关键的成分,在调控防卫基因表达中发挥重要的作用。如WRKY类转录因子,过表达OsWRKY45-1 or OsWRKY45-2激活了对稻瘟病的抗性但是抑制了对纹枯病的抗性,此外这两个转录因子在调控水稻对细菌的抗性中发挥相反的作用:OsWRKY45-1负调控水稻对Xoo和Xoc的抗性,而OsWRKY45-2正调控水稻对Xoo和Xoc的抗性。在拟南芥中,过表达NPR1增强了对细菌病原菌丁香假单胞菌和卵菌的SNS BSR,且这种抗性是有剂量效应的。值得注意的是,NPR1过表达会导致自发免疫和多效表型。
抗菌物质(保卫酶,防卫素,次级代谢物如植物抗毒素,ROS,胼胝质的沉积,细胞壁修饰和程序性细胞死亡)的产生通常受PR基因调控的,这在植物中是唯一的,并且对多种病原菌都有效。
这些PR基因的SNS BSR通常由过表达来实现,如在拟南芥中过表达CaAMP1(Capsicum annuum ANTIMICROBIAL PROTEIN1)增强了其对多种病原菌的抗性。
植物激素合成相关的蛋白也在BSR中发挥重要作用,如OsACS2(乙烯合成酶) 。过表达OsACS2增强了乙烯的产生,防卫基因表达,和对纹枯和大多数稻瘟病小种的抗性;但过表达OsACS2对农艺性状没有影响。
Susceptibility (S)gene: 促进感染过程或支持与病原菌感病性的任何植物基因。
S基因通常被病原菌靶向或诱导来负调控宿主抗病性。Xa5,编码TF IIA的γ亚基 ,是水稻中鉴定的第一个S基因和被发现负调节对Xoo和Xoc多个小种的SNS BSR。Xa13/OsSWEET11 编码一个糖运输蛋白,促进了细菌和真菌侵染,失活后增强了对Xoo和纹枯的抗性。
在水稻中克隆了Bsr-k1(BROAD -SPECTRUMRESISTANCE KITAAKE-1),发现其编码了一种肽重复结构域RNA结合蛋白,并且负调控SNS BSR。Bsr-k1敲除导致水稻苯丙氨酸解氨酶基因(OsPALs)表达上调,并且增强了水稻对稻瘟病和Xoo的抗性。
与主要的基因介导的抗性相比,QTLs控制的数量抗性通常被认为是非物种特异性的,且更持久。
Lr34/Yr18/Pm38编码一种ATP结合盒转运蛋白,该蛋白能部分抵抗小麦的叶锈病、条锈病和白粉病。
NHR是植物对大多数潜在致病性微生物表现出的最常见的抗病形式。第一个被分离的NHR基因是拟南芥的NHO1(NONHOST 1),它正调节对几种非宿主病原体的SNS BSR,如丁香假单胞菌和灰霉病菌。
水稻6号染色体上的Pi2/Pi9位点包含多个RNS-BSR基因,包括Pi2、Pi9、Pi50、piz-t和Pigm。
9个RNS-BSR R基因编码非NLR蛋白(补充表2);例如,水稻基因Xa4编码WAK蛋白,并在不影响粮食产量的情况下提供了对Xoo的持久的RNS BSR。在未接病的植物中,XA4激活纤维素合成酶基因CesA的转录,促进纤维素生物合成,抑制扩张素表达,增加植物细胞壁的机械强度,抑制Xoo侵染。
泛素化介导的信号通路通过激活NLRs和下游免疫信号从而在RNS BSR中发挥重要作用。水稻E3 OsBBI1(BLAST AND BTH-INDUCED 1)通过修改宿主细胞壁来对稻瘟病产生RNS BSR。过表达OsBBI1 增加了ROS,如H 2 O 2 的积累。水稻中另一种E3 OsPUB15与水稻稻瘟病的R蛋白Pid2互作,从而正调控细胞死亡和基础抗性,因此对稻瘟病有RNS BSR。
蛋白激酶类基因也参与RNS BSR。OsBRR1正调对稻瘟病的抗性;六倍体小麦克隆到的LecRK-V(L-type lectin receptor kinase V),在苗期和成熟期产生对白粉病的抗性。
Pyramiding: 通过遗传策略把两个或两个以上的基因结合起来形成优良品系或品种的过程。
Marker-assisted selection (MAS): 这是传统育种的一个补充工具,其中个体的选择取决于多态分子标记和性状之间的联系。
目前为止已鉴定五种S基因来传递 RNS BSR。Mlo是大麦中鉴定的第一个S基因,后来发现在几乎所有高等植物中都存在。MLO定位在膜上,包含保守的跨膜结构域和C端的钙调蛋白结合结构域。
水稻中的S基因,Pi21(QTL)编码富含脯氨酸的蛋白,有一个重金属结合结构域和蛋白互作结构域。pi21的隐性等位基因(在富含脯氨酸的motif上发生突变)对一些稻瘟病小种有RNS BSR。另一个水稻RNS-BSR S基因 Bsr-d1(Broad-spectrum resistance Digu 1) 编码C2H2类TF,在Bsr-d1启动子区一个单核苷酸的突变增强了与MYB转录因子 MYBS1的结合,抑制了Bsr-d1的表达,增强了对多个稻瘟病小种的抗性。一些S基因也在rice-Xoo的病理系统中起作用,包括Xa25/OsSWEET13和Xa41(t)/OsSWEET14,它们编码促进细菌侵染的糖转运蛋白,减少了对Xoo的RNS BSR
三个RNS-BSR QTL已在小麦、玉米和马铃薯中被克隆。小麦中的Fbb1,玉米中的ZmWAK-RLK,马铃薯的R8.
包含多个R基因的水稻通常比包含单个R基因的水稻抗谱要广。如,包含Pi2/Pi1, Pigm/Pi54,Pi2/Pi54, and Piz-t/Pi54对的水稻株系比只含单个R基因的抗性要好。使用MAS获得的Xa4、Xa21、Xa7、Xa23和Xa27聚合的优良水稻品种比只有一个基因的品系具有更广的抗性谱和更高的抗性水平。
当植物不受病原体侵袭时,通常严格控制植物基因的表达以避免自身免疫;然而,少数R基因的过表达可以激活免疫反应,产生抗多种病原菌的BSR,而不会引起高水平的细胞死亡。如使用不同的启动子,包括天然的WRKY13启动子和玉米ubi启动子,增加水稻R基因Xa3/Xa26的表达,可以增加对Xoo抗谱。过表达水稻PRRs OsLYP4和OsLYP6的使对Xoo和稻瘟病产生BSR。
利用防御信号和PR基因来设计BSR是可能的,因为它们通常在免疫受体的下游起作用。
使用TALEN/CRISPR靶向小麦的Mlo位点使得植物抗白粉病。番茄中,使用CRISPR敲除Mlo的同源基因SIMlo1导致抗白粉病。水稻中,CRISPR诱导的敲除Pi21的富含脯氨酸motif提供了对稻瘟病的RNS BSR,编辑三个SWEET基因的启动子区导致了籼梗稻中对所有测试的Xoo株系的BSR。
在水稻中,在多个地点混合种植两年的抗病和感病品种可以大大降低两个品种稻瘟病的严重程度。
pigm,bsr-d1,IPA1。
免疫受体、防御信号、PR和NHR基因等的过表达常常导致细胞死亡和侏儒表型。上游的开放阅读框,在5‘UTR区域,是翻译过程和mRNA周转强有力的顺势调控元件,在被子植物基因组中含量丰富。
BSR品种的广泛和长期种植可能会增加病原菌的选择压力,增加耐药群体的出现。建立用于评价不同品种抗病能力的自然病圃,也将有助于检验BSR基因的有效性。
将PRR和NLRs或QTLs结合,能够增强抗性水平和转基因的抗谱。
以前的研究表明,在一个金字塔中,一个R基因可能掩盖了其他基因的影响,这样一些R基因组合比其他组合提供更少的抗病性。含piz5和Pita的水稻抗病性低于单独含piz5的水稻。
活体性病原菌和死体性病原菌使用不同的策略:死体性病原体杀死宿主组织,因为它们在死细胞或垂死细胞的内容物上定植并茁壮成长,而活体性病原菌则依赖活的宿主细胞来完成它们的生命周期。在许多情况下,对活体性病原菌具有抗性的植物容易受到死体性病原菌的感染,反之亦然。
1.新品种BSR的选择是作物育种中重要的目标。
基因编码PRRs,NLRs和其他的防卫相关蛋白。
3.以QTLs、感病性丢失、非宿主抗性为基础的基因也涉及到BSR。
4.作物中长期的BSR能够通过不同的育种策略来实现。
5.低成本的定位策略,如RenSeq,能够应用到野生品种BSR基因的快速分离。
6.基因组编辑技术,如CRISPR,在BSR设计育种中发挥重要作用。
论文链接:
龙井12345
水稻微生物组动态变化揭示核心垂直传播的种子内生微生物期刊:MicrobiomeIF:发表时间:第一作者:张晓霞,马毅楠通讯作者:魏海雷通讯作者单位:中国农科院农业资源与农业区划研究所DOI号:实验设计实验设计图:本研究基于两代水稻、6个品种(RBQ、L31、M63、P64、Dular和Kasalath)、4个种植区(三亚、廊坊、南昌和西双版纳)、5个取样部位(散土、根际土、根内、茎内、种子内)的481份样品进行了高通量微生物组深度解析。 结果1.水稻微生物群落多样性及其驱动因素 作者利用Chao1和Shannon指数描述样品的α-多样性后发现,同一水稻品种的根际、根、茎和种子内生微生物在不同地区的α-多样性没有显著差异。此外,6个水稻品种的根际、根内、茎内和种子内样品的α-多样性指数在4个种植地点没有显著差异,说明水稻基因型对微生物多样性没有影响。此外,根际和散土微生物群落的α-多样性在4个种植地点具有明显的差异,然而,内生微生物(茎、根和种子)多样性在4个地点具有不同的分布,表明外界环境对水稻内部的微生物多样性影响不大。重要的是,作者还发现水稻微生物的α-多样性不受品种和种植地区的影响,始终呈现从根际、根、茎到种子内降低的规律。 图1 水稻相关微生物群落的α-多样性。d和g, 6个水稻品种不同取样部位的4个种植地区合集的Chao1和Shannon指数。e和h, 4个种植地区6个水稻品种不同微生境微生物区系的Chao1和Shannon指数。f和I, 不同取样部位的所有水稻品种和种植地区合集的Chao1和Shannon指数。通过基于Bray-Curtis相异性的PCoA分析,结果显示取样部位是微生物组变异的最主要影响因素(R2 = , p < ),而受种植地区(R2= , p < )和水稻品种(R2 = , p = )的影响较小。可见,取样部位是水稻微生物组组成的主要驱动力。这些数据表明,水稻微生物群落的多样性从根部远处到近处、从外部到内部、从地下到地上呈稳步下降趋势。图2 基于Bray-Curtis相异性的水稻取样部位、种植地区和品种的PCoA分析。 2.水稻微生物的群落组成及动态变化 为了调查水稻微生物的群落组成及动态变化,作者分析了在不同条件下的水稻微生物群落富集和组成情况。对于散土样品,三亚种植区的β-变形菌纲(Betaproteobacteria)的占比最高(),而其他细菌菌纲占比均小于10%。相比之下,放线菌纲(Actinobacteria)广泛分布在廊坊和西双版纳种植区,而疣微菌门(Verrucomicrobia subdivision 3)在南昌种植区显著富集。根际土样品细菌群落组成与散土样品十分相似,但少数类群在这两种取样部位间变化明显,例如β-变形菌纲(Betaproteobacteria)。γ-变形菌纲(Gammaproteobacteria)是唯一一个在散土、根际、根、茎和种子中逐渐富集的菌纲,而放线菌纲、α-变形菌纲和β-变形菌纲逐渐减少,说明水稻内部生态位更加有利于γ-变形菌纲的生存。因此,来自于γ-变形菌纲的泛菌属(Pantoea)和黄单胞菌属(Xanthomonas)比来自α-变形菌纲的鞘氨醇单胞菌属(Sphingomonas)和β-变形菌纲的食酸菌属(Acidovorax)在研究水稻内生方面更加具有优势。此外,在不同取样部位中丰度最高的前五个菌纲和菌属呈现动态变化,在子代种子样品中,γ-变形菌纲和泛菌属最为优势。图3 水稻取样部位微生物群落组成。a,纲水平散土、根际土、根内、茎内、子代种子和亲代种子内生微生物组成柱状图。b, 纲水平各取样部位前五汇总图。c, 属水平散土、根际土、根内、茎内、子代种子和亲代种子内生微生物组成柱状图。d, 属水平各取样部位前五汇总图。3.细菌共现性网络和关键类群 通过构建不同取样部位的细菌共现性网络,作者进一步解析了细菌类群和取样部位间复杂相互作用对水稻微生物群落组成的影响。总体而言,网络的复杂性从根际、根内、茎内到种子内逐步降低。根据模块化指数可以观察到地下部分(散土、根际土和根内)比地上部分(茎内和种子内)具有更明显的模块化趋势。子代种子内样品的网络节点数、边数和平均聚类系数均为最低,网络组成最为简单。由此可见,取样部位对微生物网络的构建具有显著影响。作者根据网络节点解析微生物群落中的关键微生物。网络节点中变形菌门数量最多,且在茎内和种子内生样品中所有的节点微生物都来自变形菌门,说明该菌门在水稻内生微生物组中的重要地位。图4 基于SparCC构建的微生物网络及网络参数。a, 水稻微生物组不同取样部位间的共现性网络。每个节点代表一个细菌ASV,青色标记代表网络节点,边的颜色代表作用类型,红色代表正相关,蓝色代表负相关。b, 各取样部位间微生物网络的主要拓扑结构特征。4.水稻核心内生菌群 为了挖掘能够在水稻中垂直传播的核心内生微生物类群,作者首先以大于70%的阈值在不同地点、水稻品种和微生境中提取核心ASV,最终在根、茎和子代种子内生样品中分别发现了438个、94个和27个ASV,其中三者共有的ASV为14个,分布在两个菌门,6个菌目。因此,作者推测水稻核心内生菌群的组成并不完全随机,而是受到了细菌特征、宿主环境和代谢特点的影响。图5 水稻核心内生微生物和垂直传播类群。a, 韦恩图显示高频率出现在水稻内生取样部位(根内、茎内和种子内)的ASV。b, 韦恩图展示10个潜在的从亲本种子垂直传播到子代种子的ASV。c, 在不同取样部位的潜在垂直传播ASV的绝对丰度。5.种子内生菌垂直传播的证据 为了鉴定潜在的垂直传播细菌类群,作者分析了核心内生菌和亲代种子内生样品之间的重叠ASV,发现在14个共有内生ASV中,10个均来自亲代种子内生样品。同时ASV_2 (Pantoea)、ASV_26 (Pseudomonas)、ASV_48(Xanthomonas)和ASV_238(o_Enterobacterales)在根内、茎内、亲代种子和子代种子样品中的绝对丰度和出现频率均显著高于散土和根际土样品,表明这4种ASV最有可能是垂直传播的类群。 为进一步获得垂直传播的细菌类群,作者对种子内生细菌进行了高通量地分离、培养、纯化和鉴定,从4个种植地区和2个水稻品种(P64和Dular)的亲子代种子中分离获得了957株细菌。其中泛菌和黄单胞菌是数量最多的两个细菌菌属,分别占分离菌株的和。21株泛菌和27株黄单胞菌的部分16S rRNA基因序列分别与ASV_2和ASV_48序列完全相同。其中,9株泛菌和17株黄单胞菌来源于子代种子样品,其余均来自亲代种子样品。作者对这些菌株进行了基因组草图测序并进行了系统发育分析,发现分离获得的泛菌菌株分别属于P. ananatis、P. dispersa和 P. stewartia三个种,黄单胞菌均为X. sacchari种。通过比对亲代和子代的ANI值和核心基因组的相似性,发现来源于子代种子的8株泛菌与来源于亲代种子的9株泛菌具有极高的相似性;来自子代种子样品的4株黄单胞菌与来自亲代的4株菌株黄单胞菌具有极高相似性。以上结果表明种子内生菌在株系水平上存在垂直传播。图6 可培养的垂直传播水稻种子内生菌鉴定。a, 四个水稻种植区、两个水稻品种的亲代种子和子代种子中分离获得的可培养细菌菌株数量。b,圈图展示a中菌株属水平相关关系。c, 亲代种子和子代种子样品中分离的泛菌菌株ANI热图。d, 亲代种子和子代种子样品中分离的泛菌菌株串联核心基因组一致性热图。e, 亲代种子和子代种子样品中分离的黄单胞菌菌株ANI热图。f, 亲代种子和子代种子样品中分离的黄单胞菌菌株串联核心基因组一致性热图。6.可垂直传播的种子内生菌群基因组挖掘和功能特征 为了进一步阐明水稻中可垂直传播类群的潜在功能,作者对所有已测序的内生泛菌和黄单胞菌菌株进行基因组挖掘分析。作者计算了泛菌和黄单胞菌的泛基因和核心基因数量,并利用COG和KEGG数据库对核心基因进行了功能注释。在COG注释中,核心基因组显著富集在E(氨基酸转运和代谢)和G(碳水化合物转运和代谢)两个功能类别中,且KEGG注释中同样存在高度相关的 “碳水化合物代谢”和“氨基酸代谢” 通路。随后,作者重点关注了级代谢产物、蛋白质分泌系统和酶三大功能类别,分析中发现所有泛菌菌株都含有促进植物生长相关的1-氨基环丙烷-1-羧酸(ACC)脱氨酶和吲哚乙酰胺水解酶(iaaH)。此外,所有泛菌基因组中都具有编码多种消化酶的基因,如右旋糖酶、β-半乳糖苷酶、果胶酶、纤维素酶和淀粉酶基因。并且均具有T1SS、T5aSS和T6SS,而只有少数菌株具有T2SS、T3SS、T4SS、T5bSS和T5cSS。黄单胞菌基因组中也具有iaaH基因和丰富的消化酶编码基因如β-半乳糖苷酶、淀粉酶和果胶酶基因。然而,分离出的黄单胞菌菌株基因组中仅含有T1SS、T4SS和T5SS,而不含致病性T3SS和T6SS。随后作者对部分泛菌和黄单胞菌进行了一些促生功能特征的检测并发现所有菌株都具有纤维素酶活性,并能够产生吲哚-3-乙酸(IAA),这与基因组挖掘的结果相对应。图7 水稻种子垂直传播内生菌的系统发育分析。a, 基于1258个单拷贝同源基因的串联多序列比对建立的21株泛菌菌株与20株模式菌株的最大似然发系统发育关系。b, 基于892个单拷贝同源基因的串联多序列比对建立的27株泛菌菌株与22株模式菌株的最大似然发系统发育关系。SM,次生代谢产物;PSS,蛋白质分泌系统;ENZ,消化酶。总结本研究建立了水稻内生微生物资源库,并通过多尺度微生物组学分析,阐明了种子内生微生物组中核心类群的垂直传播与功能特征,对未来开发种子内生菌并提高植物适应性奠定了理论基础。对进一步理解微生物-植物共进化理论提供了新的证据。水稻内生微生物资源在营养转化与吸收、抗病抗逆、耐胁迫等方面表现出的巨大潜力,也为微生物肥料、微生物农药、微生物种衣剂、微生物防腐剂的研发开辟了新的思路。中国农科院农业资源与农业区划研究所张晓霞研究员和马毅楠博士后为该论文的共同第一作者,魏海雷研究员为通讯作者。该研究得到国家自然科学基金、中国农业科学院科技创新工程等项目资助。
好猫墙纸
株高和分蘖是影响水稻株型和产量的核心要素。分蘖数直接影响有效穗数,因此对水稻产量的形成具有重要影响。株高能够直接影响作物的耐肥性和抗倒伏性,矮化育种推动了第一次“绿色革命”的发生。水稻的株高与分蘖通常存在一种负相关的关系,株高高的水稻一般分蘖较少,而株高矮的水稻一般分蘖较多。赤霉素是影响水稻株高的主要激素之一。生产实践中,对水稻秧苗喷施适宜浓度的GA合成抑制剂多效唑,可以使秧苗矮化,促进分蘖的增加。然而,人们对赤霉素如何协同调控水稻株高与分蘖的分子机理仍不清楚。解析水稻株高与分蘖协同调控的分子机理具有重要的科学意义与理论价值,对水稻株型改良及品种设计具有重要的应用价值。 中国科学院大学博士生导师,遗传发育所植物基因组学国家重点实验室李家洋研究员课题组长期致力于对水稻株型调控机制的解析,克隆了调控水稻分蘖形成的首个关键基因MOC1(Monoculm 1)(Li et al., Nature, 422: 618-621, 2003)及其调控基因TAD1 (Tillering and Dwarf 1)(Xu et al., Nat Commun, 3: 750, 2012)。近期,李家洋研究组在水稻株高与分蘖协同调控的分子机理研究上取得新进展,发现GA缺陷突变体分蘖数的增加是由于促进分蘖芽的伸长而非影响分蘖芽的起始导致的。进一步研究发现GA信号通路中的关键抑制因子DELLA蛋白SLR1可以直接与MOC1蛋白发生相互作用。SLR1能够通过抑制MOC1蛋白的降解从而促进分蘖的伸长。GA处理后,SLR1蛋白降解,进而无法抑制MOC1蛋白的降解,导致MOC1蛋白减少,植株表现出株高增加、分蘖数减少的表型。研究还发现SLR1对MOC1的抑制效应并不依赖于TAD1途径,且GA信号对株高和分蘖的调控分别影响不同的下游基因,为打破株高与分蘖的连锁效应提供了可能性,从而为分子设计育种提供理论基础。该研究解析了赤霉素信号协同调控水稻株高与分蘖的分子机理,是该领域的一项重要进展。 该论文于2019年6月21日在线发表于Nature Communications(DOI:),中国科学院大学已毕业的博士研究生廖志刚(培养单位:遗传发育所,导师:李家洋研究员)和遗传发育所余泓副研究员为该文章的共同第一作者,李家洋研究员为通讯作者。该研究得到国家自然科学基金、科技部等项目的资助。 
还是自己写吧,学术不能假
是很体面的。但是别人对他
一、基因疫苗的诞生自1796年英国医生琴娜(Jener)首次采用牛痘苗以来,疫苗已在世界范围内被广泛应用,200多年来各种疫苗已经帮助人类战胜了包括天花在内的多
当前,我国新冠疫苗接种工作有序展开,从3月下旬开始,我国启动了新冠疫苗接种数据日报制度,这是我国疫苗接种史上首次启动日报制度。每天更新新冠疫苗接种数据,既是展示
① “黄芪多糖”介绍及其益处 ② “菇类多糖”介绍及其益处 ③ “紫锥菊”介绍及其益处 ④ “牛初乳”介绍及其益处 ⑤ “转移因子”介绍及其益处 ⑥ “甘露聚糖