• 回答数

    6

  • 浏览数

    314

雨樱花ran
首页 > 职称论文 > 毕业论文光纤光缆的发展

6个回答 默认排序
  • 默认排序
  • 按时间排序

C罗C梅西梅

已采纳

1�概述 随着密集波分复用DWDM技术、掺铒光纤放大器EDFA技术和光时分复用 OTDM技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统发 展,并且逐步向全光网络演进。采用光时分复用OTDM和波分复用WDnm相结合的试验系统,容量可达3Tb/s或更高;时分复用TDM的10Gb/s系统和与WDM相结合的32×10Gb/s和160×10Gb/s系 统已经商用化,TDM40Gb/s系统已经在实验室进行试验。在如此高速率的DWDM系统中,开发敷设新一代光纤已成为构筑下一代电信网的重要基 础。要求新一代光纤应具有所需的色散值和低色散斜率、大有效面积、低的偏振模色散,以克服光纤带来的色散限制和非线性效应问题。 光纤是光信号的物理传输媒质,其特性直接影响光纤传输系统的带宽和传输距离,目前已开发出不同特性的光纤以适应不同的应用。目前常用的光纤种类有常规单模光纤、色散位移光纤和非零色散位移光纤,这些光纤 的低损耗区都在1310~1600nm波长范围内。色散位移光纤主要为1 550nm频段的单一波长高速率传输研制的;非零色散位移光纤,它包括大 有效面积光纤 LEAF、色散平坦光纤DFF、全波光纤ALL Wave等,真波光纤对波长窗口、色散和PMD特性做了优化,使之适宜1550nm频带上高比特率 DWDM传输,朗讯的另一种非零色散位移光纤全波光纤消除了1380nm处的水峰,为大城市METRODWDM应用做了优化;CorninG公司的LEAF光纤,对抑制非线性效应有独到之处。影响光纤传输的传输距离和 传输性能的关键性因素之一是色散,另一个影响传输系统尤其是DWDM系统 指标的重要因素是光纤的非线性,它们对于不同类型光纤的传输性能有决定性 的影响,特别是WDM系统的传输性能。 无论是核心网还是接入网,目前主要应用的还是光纤。在核心网中新建线路已开始采用光纤,在接入网中已开始应用光纤带光缆。光纤的选型是波分复用系统设计中很重 要的一个问题。过去由于技术的限制光纤只有少数的几种,同时我国已埋设的 光纤几乎都是常规单模光纤,选型问题就不那么重复。现在新型光纤越来越多 。在设计波分复用系统和进行传输网建设时,光纤的选型就十分重要。本文在介绍新一代光纤发展情况的基础上,分析了非线性效应对WDM传输的影响、和光纤在未来传输网上的应用,对两种光纤上进行WD M传输的优缺点进行分析。 2�光纤技术及新进展 单模光纤 单模光纤在C波段1530~1565 nm和L波段1565~1625nm的色散较大,一般为17~22psnm·km,系统速率达到以上时,需要进行色散补偿,在10Gbit/s时系统色散补偿成本较大,它是目前传输网中敷设最为普遍 的一种光纤。色散位移光纤 色散位移光纤在C波 段和L波段的色散一般为-1~·km,在1550nm是零 色散,系统速率可达到20Gbit/s和40Gbit/s,是单波长超长 距离传输的最佳光纤。但是,由于其零色散的特性,在采用DWDM扩容时, 会出现非线性效应,导致信号串扰,产生四波混频FWM,因此不适合采用DWDM。 非零色散位移光纤 非零色散位移光纤在C波段的色散为1~6psnm·km,在L波段的色散一般为6~10ps nm·km,色散较小,避开了零色散区,既抑制了四波混频FWM,可采用DWDM扩容,也可以开通高速系统。LuCent公司和康宁公司的光纤,分别叫做真波光纤和SMF-LSTM光纤。真波光纤的零色散点 在1530nm以下短波长区,在1549nm-1561nm的色散系数为 /nm.km;SMF-LSTM光纤的零色散点在长波 长区1570nm附近,系统工作在色散负区,在1545nm的色散值为-/nm.km。新型的光纤可以使有效面积扩大到一般 光纤的~2倍,大有效面积可以降低功率密度,减少光纤的非线性效应。国际上陆续又开发出了一系列新型通信单模光纤,如大有效面积非零色散位 移单模光纤包括康宁的LEAF和朗讯的TrueWaveXL、低色散斜率 光纤TureWaveRS、斜率降低的大有效面积非零色散位移单模光纤、色散平坦型非零色散位移单模光纤、以及斜率补偿单模光纤等。大 有效面积光纤和低色散斜率光纤 康宁Corning和郎讯还分别推出了LEAF和RS·TureWave光纤。它们都是第二代的非零色散位移光纤。 LEAF光纤将光纤的有效面积Aeff从常规的50μm2增加到72μm 2,增加了32%。有效面积代表在光纤中用于传输的光功率的平均面积,因 而大大地提高光纤中SBS、SRS、SPM、XPM等非线性效应的阈值。从而使系统具有更大的功率传输能力。它可以承载更大功率的光信号,这意味 着可以实现更多的波长通道数目、更低的误码率、更长的放大间距和更少的放大器。所有这一切都意味 着拥有更大的容量和更低的成本。 RS-TureWave光纤的最大优点是 色散斜率小,仅为/nm2·km。小的色散斜率和色散系数意味着大的波长通道数目、高的单通道码率,同时它还可以容忍更高的非线性 效应。这也意味着更大的容量和更低的成本。 无水峰光纤 朗讯公司 发明的全波光纤ALL-waveFiber消除了常规光纤在1385nm 附近由于氢氧根离子造成的损耗峰,损耗从原来的2dB/km降到/km,这使光纤的损耗在1310~1600nm都趋于平坦。其主要方 法是改进光纤的制造工艺,基本消除了光纤制造过程中引入的水份。全波光纤 使光纤可利用的波长增加100nm左右,相当于125个波长通道100GHz通道间隔。全波光纤的损耗特性是很诱人的,但它在色散和非线性方面没 有突出表现。它适于那些不需要光纤放大器的短距离城域网,可以传送数以百 计的波长通道。当可用波长范围大大扩展后,容许使用波长精度和稳定度要求 较低的光源、合波器。分波器和其他元件,使元器件特别是无源器件的成本大 幅度下降,降低了整个系统的成本。康宁公司的METROCorTM光纤,消除了1380nm的水峰,其零色散波长在1640nm波长附近,也对色散特性负色散做了优化,使得其特别适宜于低成本的城域WDM系统。 3�光纤非线性对传输的影响 非线性效应会造成一些额外损耗和干扰,恶化系统的性能。WDM系统光功率 较大并且沿光纤传输很长距离,因此产生非线性失真。非线性失真有受激散射 和非线性折射两种。其中受激散射有拉曼散射和布里渊散射。以上两种散射使入射光能量降低,造成损耗。在入纤功率较小时可忽略。同样,在入纤功率较小时,光的折射率与光功率无关,但功率较高时,需考虑非线性折射。非线性 折射有以下几种:四波混频FWM、交叉相位调制XPM、自身相位调制SPM。其中四波混频效、交叉相位调制应对系统影响最严重。因非线性效应是非 常复杂的一个问题,在此不赘述。4�与光纤在未 来传输网上的应用 目前用于传输网建设的主要光纤只有三种,即常规单模光纤、G. 653色散位移单模光纤和非零色散位移光纤。而其中的 3光纤除了在日本等国家的干线网上有应用之外,因其在开通WDM系统时会引起FWM等非线性效应,要开通WDM系统只有采取不等距波长间隔、减小 入纤光功率等以牺牲系统性能为代价,在我国的干线网上几乎没有应用,虽然这类光纤在开通TDM高速率系统方面有优点,但在基于WDM系统的全光网的发展过程中,该类光纤并不具有优势,也不建议使用。 这样,真正可以用于 骨干网乃至城域等应用的光纤只有和光纤两种,虽然在 光纤中又有多类产品,但目前对于这两种光纤在未来传输网中的应用又存在着许多不同看法。 通常单模光纤在C波段1530~15 65nm和L波段1565~1625nm的色散较大,一般为17~22ps/nm·km。在开通高速率系统如10Gb/s和40Gb/s及基于单 通路高速率的WDM系统时,可采用色散补偿光纤来进行色散补偿,色散补偿 光纤DCF具有负色散斜率,可补偿长距离传输引起的色散,使整个线路上1 550nm处的色散大大减小,使光纤既可满足单通道10Gb/s、40Gb/s的TDM信号,又可满足DWDM的传输要求。但DCF同 时引入较大的衰减,因此它常与光放大器一起工作,置于EDFA两级放大之间,这样才不会占用线路上的功率余度。DWDM波长范围越宽,补偿困难越大,当位于频段中心的波长补偿好时,频段低端的波长过补偿,高端的波长则欠补偿,目前一些设备厂商正在研制色散斜率补偿,这种补偿方式就会使得一 定波长范围内的光信号都得到均匀的补偿,对于多通路的WDM系统有很大好处。 光纤的基本设计思想是在1550nm窗口工作波长区具有合理的较低的色散,足以支持10Gb/s的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本:同时,其色散值又保持非零特性,具有一起码的最小数值,足以抑制非线性影响,适宜开通具有足够多波长的WDM系统。初步研究结果表明,对于以10Gb/s为基础的WDM系统,尽管光 缆的初始成本是光缆的~2倍,但由于色散补偿成本远低于光纤,因而采用光缆的系统总成本大约可以比采用G. 652光缆的系统总成本低30%~50%。第二代的光纤——大 有效面积的光纤和小色散斜率光纤也已经大规模应用,前者具有较大的有效面 积,可以更有效地克服光纤非线性的影响;后者具有更合理的色散规范值,简 化了色散补偿,更适合于L波段的应用。两者均适合于以10Gb/s为基础 的高密集波分复用系统。从技术实现的角度来看,光纤和光纤对于单通路速率为、10Gb/s的WDM系统都适用,根据设备制造商的系统设计不同,均可达到较好的性能。对于通路非常密集 的WDM系统,光纤对于非线性效应的抑制情况较好,而光纤对于FWM等非线性效应的抑制较差,此时仅从性能角度来看,光纤具有较大的优势。综合这两种光纤应用的成本来看,采用 光纤开通基于的WDM系统是最经济的选择,对于基于10Gb/s的WDM系统需要进行色散补偿,常用的方法是使用色散补偿光纤,这不可避免地要增加系统成本,而光纤开通基于10Gb/s的WDM系统时也需要进行少量的色散补偿,但色散补偿成本相对较低。对于新一代光纤的选型,需进一步考虑技术优势、光纤成本及色散补偿成本等方面的综合 因素,以便根据不同的应用选用最佳的光纤种类。我们不难得出以下结论:- 对于基于及其以下速率的WDM系统,光纤是一种最佳选择; -对于基于10Gb/s及更高速率的WDM系统,和光纤均能支持; -对于通路非常密集的WDM系统,光纤承载的系统在技术上有较好的优势,在考虑光纤选型时应综合性能及成本等多方面因素。 -对于城域网中的光纤选型,新一代的无水峰光纤因扩大了可用光谱,显示出很独特的优势。 5�总结 传输网上常用的光纤种类主要有、和三种,光纤中的新型光纤最多,如低色散斜率光纤、大有效面积光纤、无 水峰光纤等,光纤种类的不断增多对于我们来说有了更多的选择,以便构筑出 适于未来网络发展的光纤网络,相信随着技术的进一步发展,如何科学地选择光纤类型、如何抑制光纤非线性效应对传输的发展会越来越明确,未来传输网 的建设也会为我们的生活带来更多的方便与快捷。

223 评论

45度向上傾斜

最早出现的时间是1870年,当时的物理学家在偶然机会发现了光的这种全反射原理,在1996年的时候发表了相关的论文,在1990年中期,从传统的通信领域跨入到光时代中,光纤出现之后,改变了人们传统的通信模式;现在在通信领域的普及度很高,现在已经步入了信息时代,这种传感技术规模在不断扩大,所以制造成本也降低了。

278 评论

吧啦左耳

1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。结果使观众们大吃一惊。人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。人们曾经发现,光能沿着从酒桶中喷出的细酒流传输;人们还发现,光能顺着弯曲的玻璃棒前进。这是为什么呢?难道光线不再直进了吗?这些现象引起了丁达尔的注意,经过他的研究,发现这是 的作用,由于水等介质密度由于比周围的物质(如空气)大,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。表面上看,光好像在水流中弯曲前进。后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。由于这种纤维能够用来传输光线,所以称它为光导纤维。 1880-AlexandraGrahamBell发明光束通话传输1960-电射及光纤之发明1960-玻璃纤维的传输损耗大于1000dB/km,其他材料包括光圈波导、气体透镜波导、空心金属波导管等1966-七月,英籍、华裔学者高锟博士()在PIEE 杂志上发表论文《光频率的介质纤维表面波导》,从理论上分析证明了用光纤作为传输媒体以实现光通信的可能性,并预言了制造通信用的超低耗光纤的可能性1970-美国康宁公司三名科研人员马瑞尔、卡普隆、凯克用改进型化学相沉积法(MCVD 法)成功研制成传输损耗只有20dB/km的低损耗石英光纤。1970-美国贝尔实验室研制出世界上第一只在室温下连续波工作的砷化镓铝半导体激光器1972-传输损耗降低至4dB/km1973-我国邮电部武汉邮电科学研究院开始研究光纤通信1974-美国贝尔研究所发明了低损耗光纤制作法――CVD法(汽相沉积法),使光纤传输损耗降低到。1976-美国在亚特兰大的贝尔实验室地下管道开通了世界上第一条光纤通信系统的试验线路。采用一条拥有144个光纤的光缆以的速率传输信号,中继距离为10 km。采用的是多模光纤,光源用的是发光管LED,波长是微米的红外光。1976-传输损耗降低至贝尔研究所和日本电报电话公司几乎同时研制成功寿命达100万小时(实用中10年左右)的半导体激光器1977-世界上第一条光纤通信系统在美国芝加哥市投入商用,速率为45Mb/s1977-首次实际安装电话光纤网路1978-FORT在法国首次安装其生产之光纤电1979-赵梓森拉制出我国自主研发的第一根实用光纤,被誉为“中国光纤之父”1979-传输损耗降低至多模光纤通信系统商用化(140Mb/s),并着手单模光纤通信系统的现场试验工作1982-我国邮电部重点科研工程“.八二工程”在武汉开通1990-单模光纤通信系统进入商用化阶段(565Mb/s),并着手进行零色散移位光纤和波分复用及相干通信的现场试验,而且陆续制定数字同步体系(SDH)的技术标准1990-传输损耗降低至,已经接近石英光纤的理论衰耗极限值区域网络及其他短距离传输应用之光纤1992-贝尔实验室与日本合作伙伴成功地试验了可以无错误传输9000公里的光放大器,其最初速率为5Gbps,随后增加到10Gbps1993-SDH产品开始商用化(622Mb/s 以下) 的SDH产品进入商用化阶段1996-10Gb/s 的SDH产品进入商用化阶段1997-采用波分复用技术(WDM)的20Gb/s 和40Gb/s 的SDH产品试验取得重大突破1999-中国生产的8×系统首次在青岛至大连开通,沈阳至大连的32×光纤通信系统开通2000-到屋边光纤=>到桌边光纤超大容量的光纤通信系统在上海至杭州开通2005 FTTH(Fiber To The Home)光纤直接到家庭2012年,中国的光纤产能已达到1亿2千万芯公里,预计到2013年将达到1亿8千万芯公里。

357 评论

蓝星鬼魅

光纤通信技术的发展趋势[摘要]对光纤通信技术领域的主要发展热点作一简述与展望,主要有超高速传输系统,超大容量波分复用系统,光联网技术,新一代的光纤,IP over SDH与IP overOptical以及光接入网.关键词:光纤 超高速传输 超大容量波分复用 光联网光纤通信的诞生与发展是电信史上的一次重要革命.近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,本文旨在对光纤通信领域的主要发展热点作一简述与展望.1 向超高速系统的发展从过去2O多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾.传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因.目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多.高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能.目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲,日本和澳大利亚也已开始大量应用.我国也将在近期开始现场试验.需要注意的是,10Gbps系统对于光缆极化模色散比较敏感,而已经敷设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通.在理论上,上述基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,采用色度色散和极化模色散补偿以及伪三进制(即双二进制)编码后已能传输100km.然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,没有太多潜力可挖了,此外,电的40Gbps系统在性能价格比及在实用中是否能成功还是个未知因素,因而更现实的出路是转向光的复用方式.光复用方式有很多种,但目前只有波分复用(WDM)方式进入大规模商用阶段,而其它方式尚处于试验研究阶段.2 向超大容量WDM系统的演进光纤接入|光纤传输如前所述,采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘.如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路.采用波分复用系统的主要好处是:(1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;(2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;(3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;(4)利用WDM网络实现网络交换和恢复可望实现未来透明的,具有高度生存性的光联网.鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速.如果认为1995年是起飞年的话,其全球销售额仅仅为1亿美元,而2000年预计可超过40亿美元,2005年可达120亿美元,发展趋势之快令人惊讶.目前全球实际敷设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2*16*10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80*)或400Gbps(40*10Gbps).实验室的最高水平则已达到(13*20Gbps).预计不久实用化系统的容量即可达到1Tbps的水平.可以认为近2年来超大容量密集波分复用系统的发展是光纤通信发展史上的又一里程碑.不仅彻底开发了无穷无尽的光传输键路的容量,而且也成为IP业务爆炸式发展的催化剂和下一代光传送网灵活光节点的基础.3 实现光联网——战略大方向上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想.如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力.根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用.实现光联网的基本目的是:(1)实现超大容量光网络;(2)实现网络扩展性,允许网络的节点数和业务量的不断增长;(3)实现网络可重构性,达到灵活重组网络的目的;(4)实现网络的透明性,允许互连任何系统和不同制式的信号;(5)实现快速网络恢复,恢复时间可达100ms.鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力,物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目,如以Be11core为主开发的"光网技术合作计划(ONTC)",以朗讯公司为主开发的"全光通信网"预研计划","多波长光网络(MONET)"和"国家透明光网络(NTON)"等.在欧洲和日本,也分别有类似的光联网项目在进行.光纤接入|光纤传输综上所述光联网已经成为继SDH电联网以后的又一新的光通信发展高潮.其标准化工作将于2000年基本完成,其设备的商用化时间也大约在2000年左右.建设一个最大透明的.高度灵活的和超大容量的国家骨干光网络不仅可以为未来的国家信息基础设施(NII) 奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义.4 新一代的光纤近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础.传统的单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分.目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光纤(光纤)和无水吸收峰光纤(全波光纤). 新一代的非零色散光纤 非零色散光纤(光纤)的基本设计思想是在1550窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/()以上),足以压制四波混合和交叉相位调制等非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要.为了达到上述目的,可以将零色散点移向短波长侧(通常1510~1520nm范围)或长波长侧(157nm附近),使之在1550nm附近的工作波长区呈现一定大小的色散值以满足上述要求.典型光纤在1550nm波长区的色散值为光纤的1/6~1/7,因此色散补偿距离也大致为光纤的6~7倍,色散补偿成本(包括光放大器,色散补偿器和安装调试)远低于光纤. 全波光纤 与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力.但其传输距离却很短,通常只有50~80km,因而很少应用光纤放大器,光纤色散也不是问题.显然,在这样的应用环境下,怎样才能最经济有效地使业务量上下光纤成为网络设计至关重要的因素.采用具有数百个复用波长的高密集波分复用技术将是一项很有前途的解决方案.此时,可以将各种不同速率的业务量分配给不同的波长,在光路上进行业务量的选路和分插.在这类应用中,开发具有尽可能宽的可用波段的光纤成为关键.目前影响可用波段的主要因素是1385nm附近的水吸收峰,因而若能设法消除这一水峰,则光纤的可用频谱可望大大扩展.全波光纤就是在这种形势下诞生的.全波光纤采用了一种全新的生产工艺,几乎可以完全消除由水峰引起的衰减.除了没有水峰以外,全波光纤与普通的标准匹配包层光纤一样.然而,由于没有了水峰,光纤可以开放第5个低损窗口,从而带来一系列好处:(1)可用波长范围增加100nm,使光纤的全部可用波长范围从大约200nm增加到300nm,可复用的波长数大大增加;(2)由于上述波长范围内,光纤的色散仅为155Onm波长区的一半,因而,容易实现高比特率长距离传输;(3)可以分配不同的业务给最适合这种业务的波长传输,改进网络管理;(4)当可用波长范围大大扩展后,允许使用波长间隔较宽,波长精度和稳定度要求较低的光源,合波器,分波器和其它元件,使元器件特别是无源器件的成本大幅度下降,这就降低了整个系统的成本.5 IP over SDH与IP over Optical以IP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持IP业务已成为新技术能否有长远技术寿命的标志.目前,ATM和SDH均能支持IP,分别称为IP over ATM和IP over SDH两者各有千秋.IP over ATM利用ATM的速度快,颗粒细,多业务支持能力的优点以及IP的简单,灵活,易扩充和统一性的特点,可以达到优势互补的目的,不足之处是网络体系结构复杂,传输效率低,开销损失大(达25%~30%).而SDH与IP的结合恰好能弥补上述IP overATM的弱点.其基本思路是将IP数据包通过点到点协议(PPP)直接映射到SDH帧,省掉了中间复杂的ATM层.具体作法是先把IP数据包封装进PPP分组,然后利用HDLC组帧,再将字节同步映射进SDH的VC包封中,最后再加上相应SDH开销置入STM-N帧中即可.IP over SDH在本质上保留了因特网作为IP网的无连接特征,形成统一的平面网,简化了网络体系结构,提高了传输效率,降低了成本,易于IP组插和兼容的不同技术体系实现网间互联.最主要优点是可以省掉ATM方式所不可缺少的信头开销和IP overATM封装和分段组装功能,使通透量增加25%~30%,这对于成本很高的广域网而言是十分珍贵的.缺点是网络容量和拥塞控制能力差,大规模网络路由表太复杂,只有业务分级,尚无优先级业务质量,对高质量业务难以确保质量,尚不适于多业务平台,是以运载IP业务为主的网络理想方案.随着千兆比高速路由器的商用化,其发展势头很强.采用这种技术的关键是千兆比高速路由器,这方面近来已有突破性进展,如美国Cisco公司推出的12000系列千兆比特交换路由器(GSR),可在千兆比特速率上实现因特网业务选路,并具有5~60Gbps的多带宽交换能力,提供灵活的拥塞管理,组播和QOS功能,其骨干网速率可以高达,将来能升级至10Gbps.这类新型高速路由器的端口密度和端口费用已可与ATM相比,转发分组延时也已降至几十微秒量级,不再是问题.总之,随着千兆比特高速路由器的成熟和IP业务的大发展,IP overSDH将会得到越来越广泛的应用.光纤接入|光纤传输但从长远看,当IP业务量逐渐增加,需要高于的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IP overOptical).显然,这是一种最简单直接的体系结构,省掉了中间ATM层与SDH层,减化了层次,减少了网络设备;减少了功能重叠,简化了设备,减轻了网管复杂性,特别是网络配置的复杂性;额外的开销最低,传输效率最高;通过业务量工程设计,可以与IP的不对称业务量特性相匹配;还可利用光纤环路的保护光纤吸收突发业务,尽量避免缓存,减少延时;由于省掉了昂贵的ATM交换机和大量普通SDH复用设备,简化了网管,又采用了波分复用技术,其总成本可望比传统电路交换网降低一至二个量级!综上所述,现实世界是多样性的,网络解决方案也不会是单一的,具体技术的选用还与具体电信运营者的背景有关.三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用.但从面向未来的视角看,IP over Optical将是最具长远生命力的技术.特别是随着IP业务逐渐成为网络的主导业务后,这种对IP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术.在相当长的时期,IP over ATM,IP overSDH和IP over Optical将会共存互补,各有其最佳应用场合和领域.6 解决全网瓶颈的手段——光接入网过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代.不久,网络的这一部分将成为全数字化的,软件主宰和控制的,高度集成和智能化的网络.而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上),原始落后的模拟系统.两者在技术上的巨大反差说明接入网已确实成为制约全网进一步发展的瓶颈.目前尽管出现了一系列解决这一瓶颈问题的技术手段,如双绞线上的xDSL系统,同轴电缆上的HFC系统,宽带无线接入系统,但都只能算是一些过渡性解决方案,唯一能够根本上彻底解决这一瓶颈问题的长远技术手段是光接入网.接入网中采用光接入网的主要目的是:减少维护管理费用和故障率;开发新设备,增加新收入;配合本地网络结构的调整,减少节点,扩大覆盖;充分利用光纤化所带来的一系列好处;建设透明光网络,迎接多媒体时代. 所谓光接入网从广义上可以包括光数字环路载波系统(ODLC)和无源光网络(PON)两类.数字环路载波系统DLC不是一种新技术,但结合了开放接口,并在光纤上传输综合的DLC(IDLC),显示了很大的生命力,以美国为例,目前的亿用户线中,DLC/IDLC已占据3600万线,其中IDLC占2700万线.特别是新增用户线中50%为IDLC,每年约500万线.至于无源光网络技术主要是在德国和日本受到重视.德国在1996年底前共敷设了约230万线光接入网系统,其中PON约占100万线.日本更是把PON作为其网络光纤化的主要技术,坚持不懈攻关十多年,采取一系列技术和工艺措施,将无源光网络成本降至与铜缆绞线成本相当的水平,并已在1998年全面启动光接入网建设,将于2010年达到6000万线,基本普及光纤通信网,以此作为振兴21世纪经济的对策.近来又计划再争取提前到2005年实现光纤通信网.光纤接入|光纤传输在无源光网络的发展进程中,近来又出现了一种以ATM为基础的宽带无源光网络(APON),这种技术将ATM和PON的优势相互结合,传输速率可达622/155Mbps,可以提供一个经济高效的多媒体业务传送平台并有效地利用网络资源,代表了多媒体时代接入网发展的一个重要战略方向.目前国际电联已经基本完成了标准化工作,预计1999年就会有商用设备问世.可以相信,在未来的无源光网络技术中,APON将会占据越来越大的份额,成为面向21世纪的宽带投入技术的主要发展方向.7 结束语从上述涉及光纤通信的几个方面的发展现状与趋势来看,完全有理由认为光纤通信进入了又一次蓬勃发展的新高潮.而这一次发展高潮涉及的范围更广,技术更新更难,影响力和影响面也更宽,势必对整个电信网和信息业产生更加深远的影响.它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对下一世纪的社会经济发展产生巨大影响.

350 评论

小笼0113

光纤通信一直都是我国信息传送的最主要手段,自70年代以来,光纤通信技术在我国得到长足的发展。虽然历经“光通信的冬天”,却没有影响其大的发展趋势。本文主要综述我国光纤通信(包括相关的系统设备、光纤光缆和光器件技术)在核心网、城域网和接入网中的应用和研究现状以及下一步的发展。1、前言迄今,我国已敷设光缆的总长度超过了×106 km,约×107芯公里。而微波线路长度仅为2×105 km,且传输容量远低于光缆线路,可见我国信息容量的90%以上是通过光缆线路传送的,光纤通信是我国信息传送的主要手段。我国的光纤通信技术是从20世纪70年代开始研究的,30多年来取得了长足的发展。现在我国的光纤通信设备和系统,不仅可以满足国内网络建设的需要。而且已经大量服务于国际通信网络,光通信成为和国际应用水平差距最小的高科技领域之一。2、核心网光通信技术随着社会对信息需求的日益增长,我国核心传输网发展很快。从制式上讲,从1995年以前的以PDH为主,发展到目前SDH占绝对优势。从光波模式上讲,多模传送推出没有多久就被单模整个替代了。从通道上讲,从起初的单通道系统为主发展为现在的多通道即DWDM系统为主。从速率上讲,经历了从34 Mbit/s、140 Mbit/s、565 Mbit/s到622 Mbit/s、 Gbit/s的升级过程,目前长途网逐步演变为以10 Gbit/s为基础的DWDM系统占主导地位。从网络结构上讲,从简单的点到点链形系统发展为环形结构,再进一步演变为格形网,现在我国的主干光缆网络已经不再是简单的“八纵八横”了,而是一张覆盖全国,包括世界屋脊青藏高原在内的、比较完善的网状网了。此外,像同步网和管理网这类支撑网络也已经相对到位。但是整个通信网络又正处在一个转型期,面临由电路型网络向分组型网络的演变,当前网络向下一代网络的演变,固定网和移动网的融合,电信网、计算机网和广电网的融合等。对传送网的发展提出了新的要求。传送网的本身也面临进一步向超高速、超大容量、超长距离和智能化的发展,传输功能和交换功能的结合,电层网络向光层网络的发展等。

326 评论

番茄小清新

应用率是很高的,光缆的出现,影响了信息传播的速度,之后带动了通信革命的技术,带动了信息技术以及社会的发展,这种东西的透明度比较高,像玻璃丝一样, 在1870年的时候,当时的物理学家丁达尔发现了光这种物质的全反射原理,然后制造了超低耗光纤。

141 评论

相关问答

  • 光纤通讯毕业论文

    光纤通信技术的发展趋势[摘要]对光纤通信技术领域的主要发展热点作一简述与展望,主要有超高速传输系统,超大容量波分复用系统,光联网技术,新一代的光纤,IP ove

    Angelia8412 4人参与回答 2023-12-12
  • 光缆管线优化毕业论文

    邮件到达提示系统(客户端)的设计与实现基于NS2的无线传感器网络(WSN)的AODV协议的改进基于RFID井下人员定位系统的软件设计基于FPGA的情报板显示系统

    皇冠家具厂 3人参与回答 2023-12-06
  • 光纤类毕业论文

    光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。随着计算机网络,特别是互联网的发展,数据信息的传送量越来越

    雪後Sunny 4人参与回答 2023-12-05
  • 光纤光缆毕业论文

    电子信息工程大学毕业论文 (张清卓)从21世纪开始,无线传感器网络就开始引起了学术界,军事界和工业界的极大关注。美国和欧洲相继启动了许多关于无线传感器网络的研

    sanyuan617 7人参与回答 2023-12-11
  • 光纤激光器的研究论文

    包括但不限于:1、工业制造:高功率光纤激光器可以用于材料切割、焊接和打孔等工艺,其相干组束设计可以提高加工精度和效率。2、医疗保健:高功率光纤激光器可用于医学手

    切尔西在成都219 2人参与回答 2023-12-06