吃遍全宇宙!
医学遗传学论文
遗传学是研究生物体遗传和变异的科学,遗传学是生物学的重要分支和核心学科,并且是生命科学最具活力的领域之一。以下是我整理的医学遗传学论文,欢迎阅读。
1 医学遗传学课程特点
医学遗传学是医学与遗传学相结合的一门边缘学科,是遗传学知识在医学领域中的应用。它以生物、生化、病理、生理等学科的理论为基础,研究人类疾病的发生发展与遗传因素的关系,提供诊治、预防遗传病的科学依据及手段,从而改善人类健康素质。具有内容繁杂、实践性强、多学科交叉等特点。医学遗传学课程设置的内容存在递进关系、相辅相成,因此设置综合考试来考查学生对所学知识的综合运用能力是非常有必要的。
2 改革医学遗传学考试方式的必要性
传统教育理念与现代教育理念的一个重要区别是采取应试教育,还是素质教育。传统考试重识记轻能力, 往往局限于教材, 多以记忆性、上课重点为主。存在问题一是考试方式单一。二是“一考定终生”的弊端,不能客观反映每一位学生真实的学习的质量、效果和能力,带有某种投机性和偶然性,导致部分学生平时松,考前“临时抱佛脚”取得合格的分数,掩盖了教学中存在的问题,不利于教学质量的改进和提高。有些学生考试作弊,损害了考试的公平性,还对学习风气造成不良影响。另外学生考前心理负担过重,尤其是考前1 周, 学生不眠不休, 影响身心健康, 不利于创新型人才的培养。
医学遗传学已从单纯的理论型学科向理论与实践相结合的综合性学科发展,为培养复合型人才,必须探索一种更加系统、科学的考试方式,用于强化考试在教学过程中所起的评定、诊断作用,强化考试的检测功能和反馈功能,强化考试对师生的激励作用,从而培养学生的综合能力,激发学生的学习热情,避免重结果轻能力的倾向。
3 医学遗传学课程考试制度改革的主要思路
改革考试形式 在考核方法的选择上,采用灵活多样的考试方式,构成“形成性评价与终结性评价相结合”的考核与评价体系,即理论与实践相结合,技能与态度相结合,笔试、口试与操作相结合,开卷与闭卷相结合。因此将整个考试结构设置为:笔试(60%)、口试(15%)、操作(20%)、写作(5%)4个部分。
笔试包括章节性考试和期终考试的笔试成绩。教师可根据需要在某个章节学习结束后进行一次笔试测验,组成一个形成性考核的笔试成绩,这个成绩再与期终考试成绩结合起来,作为本部分成绩。
口试包括课堂提问、课堂表现、课堂纪律和课堂病例讨论的成绩。课堂提问反映学生自主学习的情况,能够检验课前预习、课堂学习、课后复习3 个方面的学习效果,易实施,操作性强,突出学习的过程,培养学生良好的.学习习惯,避免不良风气。课堂表现、课堂纪律反映学生的学习态度。课堂病例讨论, 主要讨论典型病例, 目的是让学生了解病例讨论的过程、步骤及如何运用所学知识分析问题、解决问题,以自由编组,随机抽题,口头回答的方式进行考核,有助于培养和提高学生的合作能力、参与能力、自主学习能力、自我管理能力和创新能力。
操作包括实训操作和实验报告的成绩。在整个实验课学习过程中,提供给每个学生实训操作机会,教师作为督导,从认真态度、严谨作风、职业素质、团队意识等方面进行考核,再根据完成实验报告的质量,评定每次实验成绩,取平均值作为此部分的成绩。
写作主要是指撰写小综述、小论文、翻译文献的成绩。初步培养学生的科研论文写作能力,从学生的自主态度、参与程度、完成质量、论文答辩水平等方面评定成绩。
转变教育思想观念 高等教育的目的是传授知识和培养学生的能力,由注重考核书本知识向注重学生知识、能力、素质综合考核转变;由笔试闭卷考试为主向灵活多样的考试方法转变;由重视一次性终结考试向注重全程性考核转变;传统教学以“传授知识为主”向现代教学以“培养能力为主”的转变,建立与之相适应的内容广泛、形式多样的考试考核制度。
鼓励学生参与思想政治教育讲解 教师结合学科特点和内容有意识、有目的、自觉地渗透爱国主义教育、职业道德教育、辩证唯物主义教育等思想政治教育。让学生在接受理论知识和提高技能的同时,养成良好高尚的道德风范。同时鼓励学生查找与本学科相关思想政治教育资料,在课堂上向大家讲解所受人生观、价值观的启迪。
注重考试内容的选择,提高学生综合素质 在考核内容的选择上,以“知识点上遵循教学大纲,但应用上不拘泥于教学大纲”为原则,在试题设计上,由注重知识向注重能力转变,增加应用题和能力题,考核应能充分反映学生掌握基本理论、基本技能的情况以及分析问题、解决问题和创新的能力,尽可能多一些综合性思考题、分析题、应用题,甚至没有标准答案的考试内容。考试内容应突出基础性、创新性和实践性。
调动教师积极性,促进教研活动 教师是考试模式改革的实施者,对考试改革的认识程度、对考试改革的积极性在考试改革过程中起着至关重要的作用。因此教师要不断更新教学内容、教学理念、教学方法、教学手段,付出更多的时间和精力开展教研活动,调动自身积极性。
总之,考试不仅是实施素质教育的内在要求, 也是推进素质教育实施的动力。构建多种形式的考试体系, 有利于对学生明确课程目标、巩固所学知识、检验学习效果、培养综合能力等方面具有积极作用, 有利于督促教师根据教学目标选择教学方法、调整教学内容, 强化学生的学习动机。
参 考 文 献
[1] 彭峰. 我国高校考试制度改革的若干思考.时代教育,2008,6:106107.
[2] 王海涛.改革高校考试模式,培养创新型人才.辽宁教育行政学院学报,2008,(11):162 163.
唔记得叫咩名
【遗传学的产生与发展】各种考古学资料表明,人类在远古时代就已经知道优良动植物能够产生与之相似的优良后代的现象,并通过选择和培育有用的动植物以用于各种生活目的。公元前8000年到1000年,古埃及人就开始通过饲养瞪羚作为食物,以后又用绵羊和山羊代替瞪羚并用来生产羊奶。在古非洲的尼罗河流域,公元前4000年就有记载人类通过选择和饲养蜜蜂来生产蜂蜜的活动。在植物的选育方面,在我国湖北地区新石器时代末期的遗址中还保存有阔卵圆形的粳稻谷壳,说明人类对植物品种的选育具有更悠久历史。公元前4000年左右,古埃及的石刻上还记载了人们进行植物杂交授粉的情况。但是,这些都仅仅是史前时期的人类对遗传变异现象的观察,或是在生产实践中利用一些遗传、变异性状对动植物进行选择,或许是一种无意识的行为,并没有对生物遗传和变异的机制进行严肃的研究。公元前5世纪到4世纪,古希腊医师希波克拉底(Hippocrates)及其追随者在生殖和遗传现象以及人类的起源方面作了大量探索,使古希腊人对生命现象的认识逐步从宗教的神秘色彩转向哲学的和原始科学的思维方面来。希波克拉底学派认为,雄性精液首先在身体的各个器官中形成,然后再通过血管运输到睾丸中。这种所谓的具有活性的体液(humor)是遗传特征的载体,是从身体的各个器官采集而来的。如果体液带有疾病,新生儿就表现出先天性缺陷。这种早期的思想就产生了后来由达尔文(—1882)正式提出的泛生说(hypothesis of pangenesis)。希波克拉底学派的第二种观点认为,双亲的各种生理活动和智理活动都可以传递给子代,使子代具有与亲代相似的能力和特征。体液在亲代体内可以发生变化,所以子代可以遗传其双亲从环境中获得的某些特征。这一观点与19世纪法国学者拉马克(—1829)提出的获得性遗传(inheritance of acquired characteristics)假说的形成很有关。古希腊哲学家和自然科学家亚里士多德(Aristotle,公元前384年—322年)对人类起源和人体遗传作了比希波克拉底学派更广泛的分析,他是泛生说形成的重要人物之一。他认为雄性的精液是从血液形成的,而不是从各个器官形成的。精液含有很高能量,这种能量作用于母体的月经,使其形成子代个体。古希腊的希波克拉底学派和亚里士多德的观点今天看起来似乎很天真、幼稚,但由于在当时并未发现精、卵细胞,直到1827年卵细胞才被发现,因此这种对遗传现象的解释在当时乃至以后几个世纪都产生了重要影响。由于他们都认为遗传是通过双亲进行的,并受到位于不同单位中遗传信息的控制,这些观点在遗传学系统理论的形成和发展过程中占有突出地位。因为任何一个学科的形成都不是偶然的,都离不开前人为这一学科产生所做出的大量先驱性工作。从17世纪开始直到19世纪,人们对生命现象的探索便进入了实验生物学的时代。18世纪瑞典分类学家林奈(—1778)建立了动物和植物的系统分类学,并创立了双名法,这对于后来进行动、植物育种和杂交试验提供了选择亲本的重要依据,起到了积极作用。但是,他认为物种是神创造的即所谓特创论(special creation),物种是固定不变的(fixity of species)。这对于遗传学的形成和发展又起了消极作用,使一些从事杂交工作的研究者不能正确认识他们的试验结果和从中发现遗传规律。18世纪的德国植物育种学家柯尔络特(—1806)就是受林奈思想影响很深的人之一。柯尔络特被认为世界上第一个通过杂交育种、成功地培育出植物品种的人。他首先将两组不同烟草植株杂交,然后再将杂交种反复与其亲本之一进行回交,培育出新的烟草品种。在另一组石竹属植物的育种试验中,他清楚地观察到了性状的分离现象,但由于他相信特创论和物种不变论的思想,致使对自己的研究结果产生了矛盾心理,而不能正确认识其在科学上的重要意义。法国学者拉马克总结了古希腊哲学家的思想,在1809年发表的《动物的哲学》(Philosophie Zoologique)一书中提出了与林奈物种不变论相反的观点,认为动物器官的进化取决于用与不用即用进废退理论(doctrine of use and disuse)。拉马克还认为每一世代中由于用和不用而加强或削弱的性状是可以遗传的即获得性遗传。如鼹鼠没有视力是由于其祖先长期生活在黑暗洞穴,无须使用眼睛。这样,它们的眼睛逐代退化并遗传下去,最后鼹鼠就完全丧失了视力。英国生物学家达尔文曾随“贝格尔”号战舰进行了5年的环球旅行和生物学考查,广泛研究了生物遗传、变异和进化的关系,于1859年发表了《物种起源》(The Origin of Species)的著作,提出了生物通过生存斗争(struggle for existence)以及自然选择的进化理论。他认为生物在长时间内累积微小的有利变异,当发生生殖隔离后,就形成了一个新物种,然后新物种又继续发生进化变异。达尔文的进化论是19世纪自然科学中最伟大的成就之一,它不仅否定了物种不变的谬论,而且有力地论证了生物由简单到复杂、由低级到高级的进化过程。达尔文的进化理论没有对生物遗传和变异的遗传学基础进行论述,他在1868年发表的第二部著作《在驯养下动物和植物的变异》(Variations of Animals and Plants under Domestication)中试图对这一不足作出明确解释,但他重提了“泛生说”和“获得性遗传”的观点。达尔文认为在动物的每一个器官里都存在称为胚芽(gemule)的单位,它们通过血液循环或体液流动聚集到生殖细胞中。当受精卵发育成为成体时,胚芽又进入各器官发生作用,因而表现出遗传现象。胚芽还可对环境条件作出反应而发生变异,表现出获得性遗传。达尔文的这些观点也完全是一些没有事实依据的假设。德国生物学家魏斯曼()支持达尔文有关进化的选择论,但反对获得性遗传。他于1892年提出了种质连续论(theory of continuity of germplasm),把生物体分成体质(somatoplasm)和种质(germplasm)。种质是独立的、连续的,能产生后代的种质和体质,而体质则不能产生种质。环境只影响体质,故由环境引起的变异是不遗传的即获得性不能遗传。遗传的是种质而不是体质。种质论在生物科学中产生了广泛影响,直到今天的遗传学研究和动、植物育种仍沿用了种质论的某些观点。但是,魏斯曼将生物体绝对地划分为种质和体质是片面的,而且今天的大量遗传学研究和分子生物学研究证明,某些获得性也是可以遗传的。真正科学地、有分析地研究遗传与变异是从孟德尔(—1884)开始的。孟德尔是奥地利布隆(Brünn)的一位天主教修道士,同时也是一所中学的代课教师。他于1856—1864年在他所在修道院的小花园内对豌豆(Pisum sativum)进行了杂交实验,于1865年在当地召开的自然科学学会上宣读了试验结果。他认为生物性状的遗传是受遗传因子控制的,并提出了遗传因子分离和自由组合的基本遗传规律。他从试验中得到的结论是形成今天科学遗传学的基石,所以他被公认为是遗传学的创始人。已如前述,孟德尔并不是第一个从事植物杂交试验的人,但他是第一位从生物体的单个性状出发,分析其试验结果的人。孟德尔采用科学的方法设计实验,对杂交结果进行计数和分类,并采用数学模式对各种比例进行比较分析,然后针对各种差异提出假说。接着,他根据初步试验结果和假设,准确预测有关遗传单位的传递方式,最后再根据后来的杂交结果证明他所作假设的正确性。孟德尔的研究方法和提出的学说是比较先进的和科学的,特别是他的思维方法至今仍然是科学工作者学习的榜样。但是,孟德尔的理论在当时并未受到重视,直到1900年,他的论文才得到3个不同国家的3位植物学家的注意。他们分别是荷兰的迪·弗里斯( Vries),他研究月见草和玉米;德国的柯伦斯(),他研究玉米、豌豆和菜豆;奥地利的切尔马克( ),他研究豌豆等数种植物。他们3人都从自己独立的研究中获得了孟德尔原理的证据。当他们在收集资料、引用文献时都发现了孟德尔的论文。从此,孟德尔的成就才得到广泛重视。从这以后,许多学者都按照孟德尔的理论和研究方法对动、植物的遗传现象进行了广泛深入的研究,使遗传学研究得到迅速发展。因此,人们把1900年孟德尔论文被重新发现之时定为遗传学形成和建立的开端。1905年英国人贝特逊()依据希腊“生殖”(generate)一词给遗传学正式定名(genetics)。贝特逊除了给遗传学进行科学定名外,还将孟德尔最初提出的控制一对相对性状的遗传因子定名为等位基因(allelomorph,后缩写为allele)。1903年萨顿()发现染色体行为与遗传因子的行为一致,于是提出了染色体是遗传因子的载体的观点。1909年丹麦遗传学家约翰逊()提出用基因(gene)一词代替孟德尔的遗传因子。基因一词由达尔文的泛子(pangen)的最后一个音节衍生而来。至今,遗传学中广泛使用等位基因和基因这两个名词。等位基因是指控制一对有相对差异的两种特征的遗传单位,而基因则是指控制某一特征发育的遗传单位。1910年左右,美国遗传学家摩尔根()及其同事根据对普通果蝇的研究,确定了基因是染色体上的分散单位,在染色体上呈直线排列,提出了基因的连锁交换规律,并结合当时的细胞学成就,创立了以染色体遗传为核心的细胞遗传学(cytogenetics)。就在孟德尔规律被重新发现的1900年,英国医生、生物化学家加罗德()根据对人体的一种先天性代谢疾病尿黑酸症(alkaptonuria)的研究,认为这种疾病是由于单个基因发生突变后,产生一种不具功能的产物,从而导致代谢障碍。加罗德的这种一个突变基因决定一种代谢障碍的观点在当时也并未受到广泛注意,直到1941年,比德尔()和他的老师泰特姆()对红色面包霉(Neurospora)的生化突变型进行研究时,才发现了加罗德的工作,明确提出了“一个基因一种酶”(one gene-one enzyme)的理论。后来“一个基因一种酶”又被修改成较准确的概念即“一个基因一种多肽(one gene-one polypeptide)。基因究竟是由什么物质组成的呢?这是自孟德尔规律被发现以来人们一直探索的问题。早在1869年,一位瑞士医生米切尔()就宣称自己从脓细胞中分离到了核酸。时隔30多年以后,美国的细胞生物学家威尔逊()又发现了核酸,证明它是染色体的重要组成成分,并指出它可能是遗传物质。1944年,埃弗里()等从肺炎双球菌(Diplococcuspneumoniae)的转化试验中又直接证明了脱氧核糖核酸(DNA)是遗传物质。直到1953年,沃森()和克里克()提出了DNA的双螺旋结构模型,这一成就才为进一步阐明DNA的结构、复制和遗传物质如何保持世代连续的问题奠定了基础。埃弗里及沃森等人的研究开创了分子遗传学这一新的学科领域,不仅使遗传学,而且使整个生物学跨入了一个新纪元。今天,遗传学已是一门成熟的、非常有活力的学科,被认为是现代生物学的核心。它是自孟德尔奠基以来,人类对生命本质认识的集体智慧的结晶,世界上许多科学家都对遗传学的发展做出了杰出贡献。现代遗传学的发展非常迅速,特别是在高等真核生物包括人体的发育、细胞分化、记忆、衰老及信号转导等分子机制的研究,以及结构基因组和功能基因组研究方面,几乎每年都有突破。【遗传学研究的领域】遗传学研究的领域非常广泛,包括病毒、细菌、各种植物和动物以及人体等所有生命形式。研究手段从分子水平、染色体水平直到群体水平。但现代遗传学的研究领域一般可划分成4个主要分支,即传递遗传学(transmission genetics)、细胞遗传学(cytogenetics)、分子遗传学(molecular genetics)和生统遗传学(biometrical genetics)。各个分支领域之间相互联系、相互重叠、相互印证,它们又组成了一个不可分割的整体。传递遗传学是最经典的研究领域,它研究遗传特征从亲代到子代的传递规律。我们可以将具有不同特征的个体进行交配,通过对几个连续世代的分析,研究性状从亲代传递给子代的一般规律。但在对人体进行研究时,则采用谱系分析,即通过对多个世代的调查,追踪某种遗传特征的传递方式,估测其遗传模式。由于这种研究方法首先是从孟德尔开始的,所以这一遗传学分支又称为经典遗传学(classical genetics)。细胞遗传学是通过细胞学手段对遗传物质进行研究。在这一领域中使用最早的工具是光学显微镜。20世纪初,就是利用光学显微镜发现了细胞有丝分裂(mitosis)和减数分裂(meiosis)过程中染色体及其行为的。染色体及其在细胞分裂过程中行为特征的发现不仅对孟德尔规律的再发现和被承认起到了重要作用,而且还奠定了遗传的染色体理论基础。染色体理论在20世纪上半叶遗传学研究中起着主导作用,它认为染色体是基因的载体,是传递遗传信息的功能单位。所以,有人把其中专门研究染色体变化与遗传变异的关系以及基因在染色体上定位等内容称为染色体遗传学(chromosomal genetics)。后来,随着电子显微镜的发明,我们已能够直接观察遗传物质的结构特征及其在基因表达过程中的行为,使细胞遗传学的研究视野扩大到分子水平。分子遗传学是从分子的水平上对遗传信息进行研究。它研究遗传物质的结构特征、遗传信息的复制、基因的结构与功能、基因突变与重组及基因的调节表达等内容,是遗传学中最活跃、发展最迅速的一大分支。对遗传信息在分子水平上进行研究始于20世纪40年代。虽然开始的研究对象只是细菌和病毒,但现在我们已经知道了许多真核生物遗传信息的特征、复制和调节表达机制。到70年代,随着重组DNA(recombinant DNA)技术的发明与应用,我们可以在实验室内有目的地将任何生物的基因拼接到细菌或病毒DNA上,进行大量克隆(cloning)即在离体条件下扩增目的基因。DNA重组技术在分子遗传学研究方面是一种使用广泛的、非常重要的基本技术,它不仅使基因研究不断向理论的纵深发展,而且还对医学和农业具有重要的实用意义。生统遗传学是一门用数理统计学方法来研究生物遗传变异现象的分支学科。根据研究的对象不同,又可分为数量遗传学(quantitative genetics)和群体遗传学(population genetics)。前者是研究生物体数量性状即由多基因控制的性状遗传规律的分支学科,后者是研究基因频率在群体中的变化、群体的遗传结构和物种进化的学科。生统遗传学传统上是依据群体中不同个体所表现出来的特征即表型来研究遗传和变异,但现在正在逐步向研究群体内分子水平变异的方向发展。
遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型
医学核心期刊是指经中国新闻出版总署审批准后公开发行的医学学术期刊。 1、《中国社区医师》:国内发行量最大的国家级综合性医学期刊、中国知网收录期刊、旬刊。 2、《
参考文献[1] YU Jun,HU Song-nian,WANG Jun,et al. A draft sequence of rice(Oryza sativ
遗传论文 我给你
医学遗传学(medical genetics)是遗传学与临床医学相互渗透、紧密结合的一门综合性学科。医学遗传学以人体的疾病和异常性状为对象,研究疾病与遗传的关系