• 回答数

    2

  • 浏览数

    115

8668神淡淡
首页 > 职称论文 > 石墨烯研究成果及应用论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

爱啃狼的木头

已采纳

来源丨DeepTech深 科技 (ID:deeptechchina)

作者丨杨一鸣

近日,中国科学院高鸿钧团队传出喜讯,他们实现了 在石墨烯上高精度的结构制作,精度已经达到了原子的级别。

这样的研究成果不仅显示了研究团队对于纳米结构制作的高超技术,也再次将石墨烯这一纳米器件制作平台推到了科学研究的最前沿,对于可控制造特殊性质的纳米器件,例如量子器件,有重要研究意义。

此项成果以论文的形式发表于 9 月 6 日的 Science 杂志上,高鸿钧院士对DeepTech 表示,在本次工作中,团队利用课题组长期积累的扫描隧道显微学原子操纵技术,实现了原子级精准的石墨烯可控折叠,目前也在尝试六方氮化硼等其他二维材料的可控折叠,以及利用原子级精准的可控折叠技术,构筑更为复杂的二维纳米结构。

据介绍,高鸿钧课题组长期致力于石墨烯的制备、物性研究及潜在应用,是国际上最早的在金属衬底上外延生长高质量、大面积石墨烯的课题组之一。

图 | 麻省理工 科技 评论

在这次重要突破中,如此精细的原子级制作,必定使用了非常高深难懂的手法吧!其实不然,文章的第一作者是来自中科院的陈辉、张现利和张余洋,他们在文中用的词汇是“Origami”——折纸艺术。

事实上,他们只是用 STM(扫描隧道显微镜)将石墨烯折叠了一下。没错,他们登上 Science 的文章,仅仅是将一小块石墨烯折叠了一下,得出了很奇妙的现象。

这种反差萌其实和石墨烯的特色发迹史一脉相承,石墨烯于 2004 年由英国曼彻斯特大学的两位科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃消洛夫(Konstantin Novoselov)发现。当时获取石墨烯的方法名称很响亮:“机械剥离法”,也就是从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。

而他们也因为对于石墨烯研究的卓越贡献,于 2010 年被授予诺贝尔物理学奖,那年的诺奖也被称为是“用胶带撕出来”的。只能说我们身边的科学有很多是源于生活,而高于生活的。

折纸艺术 | pixabay

一直以来,石墨烯都被认为是“新材料之王”,这种特殊的材料,也是科学家发现的首批二维材料之一,是由碳原子以 sp² 杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。

石墨烯突出的特点是,高载流子迁移率、强度高、带隙可调等,是半导体研究、纳米材料研究的热点材料。

其次,石墨烯是制作一系列纳米材料的“母体”,我们能够以石墨烯为“出发点”,制作一系列有独特特性的材料,例如像足球一样的“富勒烯”,可以认为是由石墨烯的片段卷积而成;还有“碳纳米管(CNT)”,可以认为是用石墨烯“卷”起来的。最近,MIT 的研究团队基于碳纳米管制作了一款具有超过 14,000 个晶体管的 16 位微处理器,刚刚登上 Nature 期刊。而按照不同的角度“卷”起来的碳纳米管,它们会有不同的物理特性。

那么,如果能够精确控制制作工艺,在石墨烯这个平台上制作我们想要的纳米材料就具有十分重大的研究意义和广阔的应用前景了,也能为 探索 石墨烯的新性能打开新方向。

如何实现精细操作呢?研究团队选择了可能是当今世上最精贵的仪器——“STM(扫描隧道显微镜)”进行操作,这种基于“量子隧穿效应”的仪器也是当今世上最精密的测试仪器之一,能够 通过仪器中原子尺寸级别的探针与样品之间的相互作用来实现“原子操纵(Atomic Manipulation)”,即对单原子进行移动,并以此制作纳米结构。

曾登上化学高考试题的“中国”,由我国科学家在 199 3年首次利用超真空扫描隧道显微镜技术,在一块晶体硅(由硅原子构成)的表面直接移动硅原子写下了“中国”两字

选择了石墨烯,选择了利器 STM,研究人员就放开手脚大干了一场。他们首先使用 STM 将一小块石墨烯(原文是 graphene island,即石墨烯小岛),进行折叠和展开操作,折叠方向可以是随机的,也可以是精确控制沿着指定方向进行折叠。

这一次的折叠,是当今世界上最小的一次对石墨烯的折叠,并且不仅能折叠,还能复位,如果没有十分精确的控制是不可能完成的。

高鸿钧解释道:“单纯的折叠和复原其实比较快,就是在秒的量级。但是为了实现原子级精度的可控折叠,需要首先在高定向裂解石墨上获得合适尺寸的石墨烯纳米片,我们目前使用的是氢离子轰击技术,一般需要 10 个循环的氢离子轰击,这个过程需要 10 个小时左右。一旦有了我们设计尺寸的石墨烯纳米片,折叠和复原就可以很快,并且成功率也很高,可重复性也非常好。”

STM实现的石墨烯折叠和复原 | Science

接着,研究团队在折叠处发现了具有特殊性质的结构——“褶子”,研究团队将其称为“1D tubular”,如上图中 C 和 D 所示,清晰地记录了这个结构的高度尺寸。他们发现这个结构和碳纳米管结构很类似,都是石墨烯卷起来一样的,那么它的性质会是怎样的呢?

电学测试表明,与碳纳米管类似,这样的结构具有一维材料的特性,电子在这种结构上只能做一维的运动,即向前或者向后。

高鸿钧

但是,该结构与传统碳纳米管相比也略有不同,对此高鸿钧解释道:“利用石墨烯折叠出来的 1D tubular 结构与传统的 CNT 相比,有着自身的特点。从原子结构角度来讲,折叠出来的 1D tubular 是一个非闭合结构,这种非闭合结构也会对其电子结构造成影响,我们的理论计算表明,1D tubular 除了具有传统 CNT 的 1D van Hove 奇点特征以外,还具备一些有限尺寸石墨烯片的电子结构特点。”也就是说, 1D tubular 是利用石墨烯卷起来的非闭合结构,它既有碳纳米管的一些特性,也具有石墨烯的特性。

于是高鸿钧团队开始考虑如何利用这种结构制作器件,根据石墨烯具有的“双晶”特性,他们首先尝试了“ 异质结 ”器件(一个器件由两种不同性质材料组成)的制作。

石墨烯折叠形成 | Science

所谓“双晶”特性,就是一层石墨烯上可能会出现两种排列方向不同的蜂窝结构,即使都是六边形,就好像是用两张饼拼成了一张饼一样(如上图中的 A)。换一种说法,我们也可以认为是在一层双晶石墨烯上能存在两种不同属性的石墨烯,也就是两种不同的材料。

如果我们能够以一种可控的方式将这层双晶石墨烯以一定的角度折叠起来,那么在折叠的地方就能出现两种材料的界面,也就能形成异质结的结构。

这种处于一维结构上的异质结可能会显示出不一样的电子特性,例如文章中报道的局部电子奇点等,也许会成为新型一维器件的制作方式。

对于材料的应用,高鸿钧充满自信地表示:“如果利用双晶石墨烯片进行可控折叠,可以得到传统 CNT 研究中科学家一直想要获得的结构可控的一维纳米线异质结,这样的一维纳米线异质结两端的电子结构可以相差很大,通过精心设计,可以做成传统半导体器件中的 pn 结,进而构建更加丰富的信息功能器件”。

本文经授权转载自 DeepTech深 科技 (ID: deeptechchina ),如需二次转载请联系原作者

欢迎转发到 朋友圈 。

果壳

ID:Guokr42

整天不知道在科普些啥玩意儿的果壳

我觉得你应该 关注 一下

360 评论

小吃货圈圈y

超级材料—石墨烯

“超级材料”这个词近来被大量的使用——陶瓷超级材料,气凝胶超级材料,弹性体超级材料。但是有一种超级材料把它们都淹没了,它让它的发现者获得了诺贝尔奖,并为科学的炒作和兴奋定义了上限。它有可能使处理、电力储存、甚至太空 探索 发生革命性的变化,这就是石墨烯材料。那么石墨烯的市场应用主要有哪些方面的呢?

石墨烯是由单层碳原子排列成六边形晶格的一种异形体(形式)。它是碳的许多其他异形体的基本结构元素,如石墨、钻石、碳、碳纳米管和富勒烯。石墨烯有许多不同寻常的性质,它能有效地传导热量和电,它的导电性也非常高,而且几乎是透明的。它不仅具有令人难以置信的物理特性,还被广泛引用为每一重量基础上创造的最坚固的材料。例如,石墨烯在原子小的情况下,可以使处理器中的晶体管更加紧密地封装,并允许许多电子行业向前迈进一大步。

在未来的石墨烯时代,随着批量化生产以及石墨烯技术等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,未来,石墨烯将会在以下领域率先实现商业化应用:

01 基础研究方面的应用

石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质——因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。

02 传感器方面的应用

石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。

03 新能源电池方面的应用

新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源 汽车 电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

04 防腐涂料领域的应用

目前国内防腐涂料消费量近180万吨,占世界防腐涂料总消费量的40%以上。我国防腐涂料需求主要集中在船舶、石油化工、桥梁、集装箱等领域。涂料中添加石墨烯后,石墨烯能够形成稳定的导电网格,有效提高锌粉的利用率,同时,石墨烯涂层能在金属表而与活性介质之间形成物理阻隔层,对基底材料起到良好的防护作用。

近年石油化工、铁路交通、新能源、基础设施建设等更是蓬勃发展,为防腐涂料提供了广阔的市场空间。烯旺 科技 致力于对石墨烯涂料进行大规模商业和工业应用,为全球客户提供高效产品和全方位解决方案,打破中国重防腐涂料和核心原料严重依赖进口的局面,为涂料行业工业提供坚实的基础。 作为石墨烯应用的开拓者,石墨烯防腐涂料和功能性涂料成为烯旺 科技 重点发展战略之一。烯旺 科技 整合集团投资的涂料资源,组织顶尖科研人员,率先开发了石墨烯复合陶瓷耐蚀树脂和涂料系列产品以及独特的石墨烯改性锌粉底漆等。

05 医疗 健康 领域的应用

今年3月,南京医科大学和烯旺 科技 共同研发的一项石墨烯无创治疗肿瘤新技术,被美国生物医学顶级期刊《Advanced Therapeutics》(先进医疗) 作为封面论文发表,这种无创、低副作用、低成本的全新治疗策略,或将成为治愈癌症的一大进步,有望成为未来肿瘤治疗的主流方法之一。

在慢性病的治疗上,石墨烯具有巨大的医疗潜力。石墨烯释放的远红外,作用于人体时会引发细胞原子与分子的共振,共振效应可将远红外线的热能传递到人体皮下的较深部分,作用于血管微循环系统,可加速血液循环,强化各组织间的新陈代谢,调理身体,促进慢性病的康复。石墨烯在医疗领域的发展令人惊喜,运用非药物疗法治病,一方面减少损伤,一方面节省费用,不仅让医疗技术变得更加成熟,提高医疗活动的效率和质量,更可以与传统医疗技术形成互补,同时降低医疗成本。借助这样治疗方式,才能不断让优质的医疗资源普惠到更多人群中。

石墨烯 科技 为医学领域带来了重大突破,更为人类 健康 贡献了非凡力量。烯旺 科技 在石墨烯医疗领域的更多应用,让更多科学以及医学专家坚信,在未来数十年内,更多现在无法解决的问题,石墨烯将发挥更大的作用。

总而言之,从现今石墨烯技术的实际应用以及技术水平来看,对石墨烯的很多发展已经有了决定性的进度,其中在防腐涂料及医疗 健康 领域,烯旺 科技 已发展到可以规模商业应用的阶段。我们相信,随着越来越多成熟石墨烯应用的加速落地,石墨烯,将重新定义世界,让我们一起期待世界的改变。

211 评论

相关问答

  • 石墨烯论文模板

    超级材料—石墨烯 “超级材料”这个词近来被大量的使用——陶瓷超级材料,气凝胶超级材料,弹性体超级材料。但是有一种超级材料把它们都淹没了,它让它的发现者获得了诺贝

    麻辣de火锅 4人参与回答 2023-12-10
  • 石墨烯量子点论文范文

    纳米材料3D结构石墨烯和量子点的光电探测器芯片 多年来,仅一或几个原子厚的二维纳米材料就在材料科学界风靡一时。以石墨烯为例。这种单层的碳原子产生的材料比钢强数百

    香蕉君诶嘿嘿 3人参与回答 2023-12-05
  • 石墨烯研究论文制备与检测方法

    制备石墨烯最常见的思路是先氧化石墨,然后利用超声、高温等手段使得石墨一层一层剥开(当然也许是几层),最终还原。工业上今年尚未有批量生产,能见到的都是企业、研究所

    奈奈小妖精 3人参与回答 2023-12-08
  • 石墨烯量子点论文研究

    近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“Gener

    天可莲见 2人参与回答 2023-12-09
  • 中国研究石墨烯特性的论文

    来源丨DeepTech深 科技 (ID:deeptechchina) 作者丨杨一鸣 近日,中国科学院高鸿钧团队传出喜讯,他们实现了 在石墨烯上高精度的结构制作,

    孑子孓COMIC 6人参与回答 2023-12-08