俊之独秀
实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布
nanjingyiyi
农业技术推广论文2000字篇2 浅谈影响生态农业推广的因素 摘要:生态农业是现代农业的发展方向,我国是农业大国,如何更好推广生态农业具有重大的实践意义。本文以河南焦作市的一个村庄为实证研究对象,通过调查运用多元线性回归模型得出生态农业基建支出和人力资本是影响该村发展生态农业的关键,在此基础上提出相应建议。 关键词:生态农业 多元线性回归模型 建议 一、引言 生态农业是按照生态学原理和经济学原理,运用现代科学技术成果和现代管理手段,以及传统农业的有效 经验 建立起来的,能获得较高的经济效益、生态效益和社会效益的现代化农业。 早在20世纪70年代后期,以马世骏院士为代表的学者就指出,要以生态平衡、生态系统的概念与观点来指导农业的研究与实践。1981年,马世骏先生在农业生态工程学术讨论会上提出了“整体、协调、循环、再生”生态工程建设原理。1982年,叶谦吉教授在银川农业生态经济学术讨论会上发表“生态农业—我国农业的一次绿色革命”一文,正式提出了中国的“生态农业”这一术语。我国是农业大国,农业现代化的进程决定着中国现代化进程的方向。 我国的农业具有发展分散,农业结构单一,粗放式经营的特点,这就要求按照生态农业的理念和规律,因地制宜的建设高产、优质、低耗、可持续的现代生态农业发展模式。经过30年的发展, 我国生态农业建设从无到有, 从小范围试验到大面积实施, 全国各地区的生态户、生态村、生态乡、生态县蓬勃发展起来。目前, 已初步形成了生态农业的技术体系, 有力地推动了我国传统农业向现代农业的发展。但同时也应看到其中的很多问题,许多学者也进行了大量的相关研究。 陈学军(2010)在对“生态农业的金融支持”的讨论中得出要加大政府支持力度,鼓励民间资本积极参与;创新金融产品;建立补偿风险机制以及信用担保体系加大资金;张燕(2011)在“生态农业的技术推广”中得出要建立适应生态农业发展需要的科技创新体系和技术推广体系;在生态农业的制度的研究提出了:加快管理制度,科技创新及推广制度,法律制度等的建设;王坚(2007)在中国产业化研究中提出建设农业生态基地;积极推广农产品认证制度;开发生态农业产业链等;王利群(2011)通过规范分析得出要对农民进行学历教育,专业技能,网络信息化, 政策法规 等方面进行培训;在区域化研究领域,有刘亚菲(2006)对江西省生态农业发展现状和模式的分析,指出其制约因素,并提出对策和 措施 ;王金爽等对盘锦市的生态农业发展综述。 但这些研究普遍存在以下问题:1、分析过于笼统,大部分在于理论叙述,很少有数据分析和计量;2、研究缺乏持续性,导致很多对策没有时效性,依旧是几大方向;3、生态农业有很强的区域性,目前对生态农业的研究大多还在全国层面,对区域的研究也不太深入,没有可实施性。 本文对以上问题进行了深入探讨,首先选择河南焦作市山阳区百间房乡上马村这一区域进行调查,把影响该区域生态农业推广的因素量化,进行回归分析,得出影响生态农业发展的关键因素,同时给出相应的建议。 本文的结构:第一部分主要是模型的建立,包括指标选取和数据说明,初始模型假定,模型检验,模型修正和模型分析;第二部分给出主要结论,并在此基础上深入。 二、模型的建立 (一)指标选定及数据说明 本文所选的1990—2006年数据是来自于《中国统计年鉴2008》和《河南统计年鉴2008》,以及实际搜集到的资料统计、计算、分析而得。现对相关变量给予说明。 1、生态农业实际产值Yi 已知该地区第i年农业产值占河南农业产值的比重Wi1,调查到的该地区农业中相应年份农、林、牧、渔等生态农业比重Wi2,河南农业产值ni,以1990年的农村消费物价指数为100,算得各年相应的消费物价指数ci,由以下公式算得第i年的生态农业实际产值Yi Yi = niWi1Wi2/ci(i = 1990,1991...2006) 2、生态农业基本建设支出X1i 农业基本建设支出即政府财政直接用于发展农业和为农业生产服务的各种固定资产投资,是发展农业的物质载体和基本要素。该地区的X1i由下列方式给出: X1i = XWi3Wi4/ci 其中X是河南投到农业基本建设的资金的序列,Wi3是投到该地区的比重,Wi4是投到生态农业的比重,ci同上。 3、人力资本水平2i 由于人力资本存量数据的不易获得性,我们以比例的形式给出。首先使用教育年限法,以该地区历年从事农业人员数和其受教育状况计算人力资本存量,根据该地区人口资料有关受教育的分类,将教育层次分级,以各级的平均受教育年限作为权数基值并作适当调整得存量H: H1 = ∑HEimi H2 = ∑HAimi 其中,HEi为第i学历层次的从事生态农业的人数,HAi为第i层从事农业人员总数,mi为第i学历水平的受教育年限,将文盲半文盲m1定为年,小学m2为6年,初中m3为9年,高中m4为12年,大学及以上m5为16年 , X2i = H1/H2。 4、生态农业科技投入X3i 农业科技资金投入是指用于农业科技引进、研究和推广的支出。同样的,X3是投入河南省的科技资金序列,Wi5是投入到该地区的科技资金比重,Wi6是生态农业所占比重,X3i=X3Wi5Wi6/c 5、生态农业环境投入X4i 环境投入是指用来进行环境改善,环境保护,抵制自然灾害等支出,这些数据由调查直接可得,平减过消费指数即得。 6、其他生态农业支出X5i 其他生态农业支出包括除以上其他以外的所有用于跟生态农业有关的支出,主要包括对生态产出的检测标准的完善投入,产出和市场的对接服务支出,以及相应的政府管理体系的投入。此项主要用剩余法算得,同时随物价做相应调整。 (二)初始模型假定 Y = C0 + C1X1 + C2X2 + C3X3 + C4X4 + C5X5 + e 运用普通最小二乘法(OLS)对初始模型进行估计,结果如下图: 该模型R2=,2=可决系数很高,F检验,明显显著,但 X1、X3的系数为负,与预期相反,且系数的t检验不显著,这表明很可能存在严重的多重共线性。 (三)模型检验: 算得各解释变量的相关系数,得下列矩阵 由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,确实存在严重的多重共线性。 (四)模型修正 1、现采用以下 方法 进行模型优化,筛选最佳模型(表中列出了所有回归模型,其中一元回归模型只取了Y关于X2的模型,括号内为t值): 根据以下标准: I 系数符合经济意义,不能为负 II 所有解释变量全部显著 III 可决系数要高,此模型中要大于 筛选得模型2,3,7,9符合。 2、对2,3,7,9模进行自相关性检验(DW检验) DW3= < DL= DW9= < DL 以上两个模型明显存在正相关,排除。 剩下的2,7模型的自相关性均无法判断,DW介于DU和DL之间。 3、对2,7进行异方差检验(White检验) 结果如下: 模型2 R2 = ,P = 模型7 R2 = ,P = 可以看出两个模型均不存在异方差,但考虑到P值越小越好,综合分析,认为模型2更优。 4、最优模型 Y = + + t值 () () R2 = ,2 = 5、模型分析: 模拟程度分析:由模拟结果可知,最终模型的模拟结果比较满意,拟合度较高,说明最终模型预测效果较好。 经济意义分析: 从预测结果看,基本建设支出每增加1个单位,生态农业产值增加单位,人力资本水平每增加1,产值增加,显然,基建和人力资本对产值有重要的影响。 三、引申 从统计数据的过程来看,现在还很少有具体的关于生态农业直接的数据,这也增加了数据获得的困难,好在该调查地区较小,人口相对较少,作者对此地区又非常熟悉,所以获得了第一手资料。从Y值来看,生态农业产值逐年增加,比率不断上升,说明生态农业正逐步推广,但从相对值上看,生态农业还有很大的发展空间。对此地区的模拟回归方程来看,固定资产投资力度还不够,规模不够大。农业基础设施建设投入还不足,所占比率不高,推动农业经济快速发展的主动力还有待进一步体现。同时,农民的受教育程度不高,严重影响了生态农业的推广,学习渠道和培训机会的稀缺更使得推广难上加难。 虽然模型方程中未体现其他三种因素,但并不代表其次要性。从以下图示可看出 生态科技投入正变得越来越有影响,只是该地区每年的投入资金相对较少,但可喜的是,每年的增长率正不断上升,可预见以后的10到20年定能成为主要推动生态农业发展的力量。由于生态农业有很强的地域性和时间性,在此地区是根本因素的,不一定是其他地区的根本因素。而且按照目前的情况,以上两点是关键,但随着生态农业的进一步推广和发展,其他因素就很可能成为关键,所以更需要那些关注生态农业发展的人能够实证分析,给予针对性和可行性的建议。这也是本文的目的和意义所在。希望激发更多对生态农业的量化研究,创新出更优的计量模型。 在生态农业的推广中,建立一个良好的的融资环境是必不可少的。从主体上看政府作为基本建设支出的主体,加大农民真正所需的基本设施的投入力度,建立一系列的监督机制,确保资本的有效率,但政府每年的财政支出是有限的,所要投入的领域又是相对无限的。我们不能依靠政府来解决所有的事;所以可以借助市场经济的强大力量让企业进入生态农业领域,这就需要政策上的倾斜,真正形成农业产业化,打造农产品的知名品牌,同时也要建立相应的生态产品的监测标准,定期通过媒体发布检测排名;另一方面作为生态农业的主体农民,可以通过生态农业贷款优惠以及自有资金的 保险 制度来扩大融资渠道;最后要建立健全有关融资的法律法规,减少融资漏洞。 对于农村的人力资本问题,一方面可以对农民再教育,但很显然传统的教育模式已经不适应当前的农村情况,识字率,时间精力以及兴趣,都导致农民进行传统学习的机会成本过高;因此需要创新农民的教育模式,开展专业技能培训但培训方式还有待斟酌。根据以往的历史经验和笔者的生活经历,典型的示范效应在农村会发挥很大的作用;另一方面我们可以增加农村现存的人力资本,可以通过政府政策引导大学生回到家乡发展,为农村发展贡献出自己的一份力量;还可以通过大学教育的侧重,用巧妙的方式对大学生进行正确合理的引导。 参考文献: [1]齐英.安阳市生态农业建设现状及发展对策[J].生态农业,2004 [2]王利群.提升农业生产经营主体素质,构建新农村人才支撑[J].农业与科技, [3]陈学军,周华雯.长株潭城市群生态农业产业化的金融支持研究[J].广西教育, [4]张燕.对我国生态农业技术推广的思考[J].农业经济, [5]张燕.我国发展生态农业的制度路径[J].晋阳学刊, [6]王坚,陈润洋.中国生态农业产业化战略与城乡可持续发展[J].环境与可持续发展, [7]李文华,刘某承,闵庆文.中国生态农业的发展与展望[J].资源科学, [8]李金才,张士功,邱建军,任天志.我国生态农业现状、存在问题及发展对策初探[J].农业科技管理, [9]徐岩.我国生态农业发展的回顾与展望[J].山东省农业管理干部学院学报, [10]刘亚菲.江西省生态农业发展现状和对策分析[J].农业环境与发展, [11]王金爽,杨玉明,赵丽丽.盘锦市生态农业发展现状及其对策[J],农业经济 [12]唐芳.河南财政支农资金支出结构分析[J].商丘职业技术学院学报, [13]漆雁斌,陈卫洪.低碳农业发展影响因素的回归分析[J].农村经济,2010年第2期猜你喜欢: 1. 浅谈农业推广毕业论文范文 2. 农业技术推广优秀本科毕业论文 3. 农业技术农业推广研究论文 4. 农业推广论文范文 5. 农业技术推广研究毕业论文
你这个就是线性回归第一个表 表示模型的整体拟合度,只要看调整的R²即可,这个调整的R²的范围在0-1之间,越接近1,表示模型的拟合效果越好,越接近0,拟合效果
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变
回归分析模型的有以下种类:一元回归分析和多元回归分析具体如下:就是回归分析中当研究的因果关系只涉及因变量和一个自变量时叫做一元回归分析就是当研究的因果关系涉及因
我过能源,消耗量我知道,多员线性回归,我肯定好比
1、多元线性回归的理论主体。2、多元线性回归模型的标准形式,多元线性回归模型的参数估计。3、多元线性回归模型的检验和预测原理。