• 回答数

    6

  • 浏览数

    185

素手宛花
首页 > 职称论文 > 天文学中的数学论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

小北京西城

已采纳

下面我原创码的字正如培根说过的,数学使人精细。数学交给人的不仅仅是数学问题的解决方法,还有很多数学以外的东西,比如严密的逻辑性。由Hilbert掀起的数学公理化运动以及证明论的研究使得数学真正成为了一个严密的体系。只有认真学习过数学分析的人才会明白数学的理论体系的完备性。数学是许多学科的基础,已经渗透到自然科学以及工程技术的每一个角落,以经济学为代表的部分社会科学也应用到了很多的数学。现代经济学是一个应用了大量数学知识的严密理论体系。数学推动着历史的发展。如果没有Newton和Lebniz发明了微积分,自然科学的进步就不会这样迅速。Samuelson将数学引入现代的经济学分析,使得经济学得到了飞速的发展。数学还是一个不断自我完善的体系,历史上曾出现三次数学危机,都通过数学家对经典概念的推广扩展和完善得以解决。就像人类对数的认识一样,自然数 零 负数 有理数 无理数 复数。Lebesgue扩展了Riemann的积分理论,使得积分的定义进一步扩展,不可积分的函数变为可积。没有学过数学,你的人生就失去了许多美好的东西

177 评论

加油嘴馋的我

他撰写的这个著作应该就是《缀术》,在当时这已经是最高成就了。

178 评论

丸子丸子小樱桃

应该是缀术,这种著作在数学领域,有着很高的成就,是有收藏价值的,包含了很多的数学理论。

87 评论

小宝cute

这本书籍就是缀术,这是一部非常具有影响力的书籍,也获得了当时非常高的成就,并且在唐代还被直接用做了数学课本。

310 评论

恋慕耐受不良

三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!

163 评论

汐汐蘑菇

南北朝时期的祖冲之,在历史上,首次把圆周率,准确推算到小数点后六位;这一数据的出现,比欧洲还要早一千多年。《大明历》、圆周率、指南车、定时器等等,都是祖冲之的代表作。祖冲之,南北朝时期杰出的数学家、天文学家。一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在和之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。文中的“祖率”就是圆周率,也就咱们数学里的π。

把从上古时起直至他生活的时代止的各种文献、记录、资料,几乎全都搜罗来进行考察。从不“虚推古人”,不把自己束缚在古人的错误结论之中,并且进行精密地测量和仔细地推算,“亲量圭尺,躬察仪漏,目尽毫厘,心穷筹策”。

祖冲之被南朝宋孝武帝派至当时朝廷的学术研究机关华林学省做研究工作,潜心科学,由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。

祖冲之一生贡献巨大,中国杰出历史人物金银纪念币(第3组)是中国人民银行于1986年发行的贵金属纪念币。其中一枚22克圆形银质纪念币的背面图案为祖冲之,图案中,祖冲之一手展开图纸,一手拿着毛笔,凝神细思,图纸上所画的图形写有“祖率”二字的圆周率计算示意图:在左上方有实线绘制的圆、八边形,虚线绘制的三角形、矩形,是祖率的计算方法。祖冲之推动了中国古代科学技术的进步,对后世的贡献也非常巨大。

祖冲之撰写的数学论文集(《缀术》),是当时数学领域的最高成就,可惜这部很有价值的科学著作在北宋中期就失传了,我们现在只能从历代有关文献和评论中找到一些线索。 在唐朝《缀术》曾被国立学校列为必读的教材,要学习四年,是学习期限最长的算书,由此可见《缀术》- 书内容之深奥。中世纪的朝鲜和日本的学校中,《缀术》也都被列为必读的书籍。

219 评论

相关问答

  • 导数在中学数学中的应用论文

    导数是高中数学选修课中的重要内容,在中学数学的许多问题上起到居高临下和以简驭繁的作用,是解决实际问题强有力的数学工具。运用导数的思想方法和基本理论来解决中学数学

    我爱吃酸甜苦辣 3人参与回答 2023-12-11
  • 数理天地学生论文

    在中国知网搜到了54篇作者名叫江思容的文章,但是不知道你说的这位是哪个单位,所以............. 下面列出来,你参考下。 [1]江思容. 一个递推式的

    莫非mioamy 4人参与回答 2023-12-10
  • 中学数学研究的论文

    在高中数学实际教学过程中,有些教师严重忽视了教师扮演的角色,出现过分重视学生独立学习的现象,这是高中数学 教育 工作者不容忽视的问题!下面是我为大家整理的高

    康泽装饰 2人参与回答 2023-12-07
  • 数理天地杂志高中

    数理天地(初中版)杂志创建于1991年,已经有多年历史,是中国新闻出版总署批准,具有双刊号的期刊。主办单位是中国优选法统筹法与经济数学研究会。 我国目前刊物的级

    永远幸福66 5人参与回答 2023-12-06
  • 离散数学在航天中的应用论文

    学术堂整理了一篇3000字的计算机论文范文,供大家参考: 范文题目:关于新工程教育计算机专业离散数学实验教学研究 摘要: 立足新工科对计算机类专业应用实践能力培

    岚岛全屋定制 3人参与回答 2023-12-11