雯雯闯天涯
举个例子:判断一个人是不是秃子,假设500根头发以下算秃子那么计算机会认为499根是秃子,501根不是秃子,可是我们人会认为多一根也是秃子呀?那502根呢?503……那我们都是秃子……那么用模糊数学这个结论是什么呢?499根是秃子的几率100%,501根,根呢?嗯,的可能性是秃子。呵呵,机器也能判断了
dianpingyao
利用除法来比较分数的大小 今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
骑着猪猪追月亮
人工智能是计算机科学中的一个分支,用模糊数学的命题逻辑和谓词逻辑,使计算机能构造出语句来表达知识和意思。人工智能的发展,使人们认识到人类的活动,无非是进行能量变换和信息交换,大大地推动了社会的前进,深化了人们对认识论问题的研究。 在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模糊的东西。例如,现在的掌门识别,要确认某个人的身份,要基于此人的手掌识别,然他的手掌的形状以及各种情况的考虑除了很早就有涉及误差的计算数学之外,还需要模糊数学。 人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。 模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。 目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。 三、模糊数学的主要应用 1.模糊数学自身的理论研究进展迅速。我国模糊数学自身的理论研究仍占模糊数学及其应用学科的主导地位,所取得的研究成果在《模糊数学》、《模糊系统与数学》等数十种学术期刊和全国高校学报中经常可见,模糊聚类分析理论、模糊神经网络理论和各种新的模糊定理及算法不断取得进展。 2.模糊数学目前在自动控制技术领域仍然得到最广泛的应用,所涉及的技术复杂繁多,从微观到宏观、从地下到太空无所不有,在机器人实时控制、电磁元件自适应控制、各种物理及力学参数反馈控制、逻辑控制等高新技术中均成功地应用了模糊数学理论和方法。 3.模糊数学在计算机仿真技术、多媒体辨识等领域的应用取得突破性进展,如图像和文字的自动辨识、自动学习机、人工智能、音频信号辨识与处理等领域均借助了模糊数学的基本原理和方法。 4.模糊聚类分析理论和模糊综合评判原理等更多地被应用于经济管理、环境科学、安全与劳动保护等领域,如房地价格、期货交易、股市情报、资产评估、工程质量分析、产品质量管理、可行性研究、人机工程设计、环境质量评价、资源综合评价、各种危险性预测与评价、灾害探测等均成功地应用了模糊数学的原理和方法。 5.地矿、冶金、建筑等传统行业在处理复杂不确定性问题中也成功地应用了模糊数学的原理和方法,从而使过去凭经验和类比法等处理工程问题的传统做法转向数学化、科学化,如矿床预测、矿体边界确定、油水气层的识别、采矿方法设计参数选择、冶炼工艺自动控制与优化、建筑物结构设计等都有应用模糊数学的成功实践。 6.我国医药、生物、农业、文化教育、体育等过去看似与数学无缘的学科也开始应用模糊数学的原理和方法,如计算机模糊综合诊断、传染病控制与评估、人体心理及生理特点分析、家禽孵养、农作物品种选择与种植、教学质量评估、语言词义查找、翻译辨识等均有一些应用模糊数学的实践,并取得很好效果。李洪兴教授,他领导的科研团队采用“变论域自适应模糊控制理论”成功地实现了全球首例“四级倒立摆实物系统控制”。据介绍,倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。目前,实现三级倒立摆控制的实物系统仍然是世界公认的难题,而要实现四级倒立摆控制实物系统,在世界范围内更是一项空白。北师大模糊系统与模糊信息研究中心暨复杂系统智能控制实验室采用李洪兴教授提出的“变论域自适应模糊控制”理论,先后成功地实现了四级倒立摆控制仿真实验、三级倒立摆实物系统控制,并于今年8月11日实现了全球首例四级倒立摆实物系统控制。而由此项理论产生的方法和技术将在半导体及精密仪器加工、机器人技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。
雅轩0310
摘要本文采用k-NN法,从2491个网格点的预报雨量得到91个站点预报雨量的估计值,并与对应的实测雨量进行统计对比分析。我们建立了平均绝对误差、模糊评分、面雨量三个模型,对两种雨量预报方法进行比较评价,最后为了在评价方法中考虑公众的感受,我们还构造了一个新的评价模型。结果表明方法I和方法II具有较好的晴雨预报能力,但总体上方法I的准确性高于方法II。在上述两种雨量预报方法的基础上,我们还可采用动态权重系数法对其进行综合集成,形成一种新的预报方法,该方法的可靠性要好于每种单独的预报方法。一. 问题重述我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的。气象部门希望建立一种科学评价预报方法好坏的数学模型与方法。气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据。雨量用毫米做单位,小于毫米视为无雨。(1) 请建立数学模型来评价两种6小时雨量预报方法的准确性;(2) 气象部门将6小时降雨量分为6等:—毫米为小雨,—6毫米为中雨,—12毫米为大雨,—25毫米为暴雨,—60毫米为大暴雨,大于毫米为特大暴雨。若按此分级向公众预报,如何在评价方法中考虑公众的感受?二. 符号说明: 表示第 天,第 个时段,第 个观测站点雨量的实测值(=1,2,3,4; ): 表示用第一种雨量预报方法测得第 天,第 个时段,第 个观测站点雨量的预测值( =1,2,3,4; ): 表示用第二种雨量预报方法测得第 天,第 个时段,第 个观测站点雨量的预测值( =1,2,3,4; ):表示第 天,第 个时段,第 个观测站点的实测雨级( =1,2,3,4; ):表示用第一种预报方法测得第 天,第 个时段,第 个观测站点的预报雨级( =1,2,3,4; ):表示用第二种预报方法测得第 天,第 个时段,第 个观测站点的预报雨级( =1,2,3,4; ): 表示对第 种雨量预报方法在第 天,第 个时段,第 个观测站点的预测值的模糊评分( =1,2,3,4; ):表示公众对用第c种预报方法测得的第 天,第 个时段,第 个观测站点的预报雨级的满意度( =1,2,3,4; )三. 问题分析与数据处理要评价两种雨量预报方法的准确性,就要在相同地点,相同时段对雨量的实测值和预测值进行比较。由于已知数据给出的91个观测站点的地理位置并不在用来预报的2491个网格点位置上,为了使得数据采集的地理位置相同,有两种思路对数据进行处理。一是把91个站点的实测数据扩充到2491个网格点上;二是利用2491个网格点的预报值给出91个站点的预报值。显然,第一种数据处理方式损失的信息比较多,而且是把预报值和处理过的实测值进行比较,其结果难以令人信服。第二种数据处理方式在保持91个观测站点的实测数据不被处理(从而保持实测数据真实可靠)的前提下,利用2491个网格点处的预报值来估计91个站点处的预报值;再对两种不同预报方法给出的预报值和实测到的数据分别进行比较。第二种方式虽然只在91个地点进行比较,但要比第一种方式更加有说服力。所以我们采取第一种数据处理方式,首先要利用2491个网格点的预报值给出91个站点的预报值。有以下三种方法可以用来给出91个站点处的预报值。1.k-最近邻居法(k-NN法)[1][2]给定某个观测站点的位置后,从2491个网格点中找出距离这个站点最近的k个网格点,把这k个网格点处的预报值的平均值作为这个站点处的预报值。k的大小可以根据实际需要进行调整。2.邻域平均法对每个观测站点取相同的球形邻域或者正方形邻域,把邻域内网格点处的预报值的平均值作为站点处的预报值(邻域内的网格点的数目不一定相同)。当然邻域的大小可以根据实际情况进行调整。3.二维插值法可参见计算数学方面的参考书。需要说明的是:二维插值法计算程序相对复杂,计算量也较大。k-NN法与邻域平均法都是利用站点周围网格点处的预报值的均值作为这个站点处的预报值。这两种方法计算相对简洁,同时也具有很高的精度。如果假设预报值在整个预报区域内是连续的话,在适当的条件下,k-NN法给出的估计将收敛到真实预报值(参见文献[1],[2]等)。进一步,可以认为距离站点近的网格点对站点的影响要大些,距离站点远的网格点对站点的影响要小些,因此可以根据这些影响的不同而赋予不同的权重。本文采用3-NN法计算,以距离第 个观测站点最近的3个网格点的预报值的加权均值作为该观测站点的预报值(程序见附录)。四. 问题(1)模型建立及求解1.模型I为了比较两种预报方法的预报质量,我们对其进行绝对误差值检验分析。误差值为预测值与实测值之差,绝对误差即对误差取绝对值。第一种雨量预测方法在第 时段的平均绝对误差 = ;第二种雨量预测方法在第 时段的平均绝对误差 =结果如表1所示:表1 两种预报方法的平均绝对误差平均绝对误差预测方法I预测方法II时段1(21点至次日3点)时段2(次日3点至9点)时段3(9点至15点)时段4(15点至21点)由表中得到以下结论:两种预报方法的平均绝对误差都在以内,但方法I和II的预报质量差距并不太大,在第一、二、四时段,方法I的平均绝对误差略小于方法II的平均绝对误差。进一步我们还给出了两种预报方法的预报-实测相关图(图1)。图中落在斜率为1的直线上的点为实测结果,预测点则落在该直线附近,其偏离直线越远表示预报误差越大。从图中可以看出,这两种雨量预测方法的共同点是:在各个时段对实测雨量较大的预报,大多数均变小。这说明实况出现大雨时预报水平较差。图1 两种预报方法的预报-实测相关图2.模型II为了较客观地评定两种预报方法,我们利用模糊数学中的模糊综合评判方法。模糊数学的创立者 L. 为了描述和处理事物的模糊关系,把“属于”关系进一步数量化,即集合A 中的某个元素ui 对A 不是要么“属于”要么“不属于”关系而是可以不同程度的“属于”和不同程度的“不属于”,这个程度叫做隶属度。隶属度的范围在0 与1 之间,即ui 的隶属度值域是[0 ,1 ]。“属于”关系用函数关系表示,将论域与值域相对应,故形成子集合A 唯一确定的一个映射,它们一一对应。其特点是在众多的“属于”关系的评价指标基础上进行加权平均,得出一个无量纲的综合评价值,然后比较综合评价值的大小,对受到多个因素制约的事物或对象作出一个总的评价,这就是所谓的综合评判问题[6 ,7 ] 。根据所给的条件,给每个对象赋予一个评判指标,称之为模糊评分。第 天,第 个时段,第 个观测站点的预测值的模糊评分为(1)式(1) 中第一项是预报基础分,规定为60 分;第二项为强度(量级)预报的加权分。当预报雨量与实况一致时(即预报与实况误差为0),该预报评分为100。当预报有误差时,按其误差大小给分,误差越大,分值越低,相反分值越高,预报值越接近于实测值。可以看出,根据误差大小计算的模糊评分,能够很好地表征预报贴近实况的程度,从而较好地检验两种预报方法的预报水平[3]。为了便于比较,我们给出了在各个时段的模糊评分公式。方法I和II在第 时段的模糊评分为=1,2,3,4=1,2,3,4结果见表2。由表2可以看出,两种方法的模糊评分都在80分以上,预报质量都比较稳定,但在第一、二、四时段,方法I的模糊评分都高于方法II的模糊评分。由此可见,在对雨量预报的准确程度上,方法I高于方法II。表2 两种方法的预报模糊评分方法时段时段1时段2时段3时段4预报方法预报方法.模型III由于91个观测站点的设置是不均匀的,它们较集中地分布在53×47的矩形网格的中央区域内,而面雨量能够更真实地反映平面区域降水的总状况,因此我们用其作为评价这两种方法预报好坏的另一个标准。面雨量是单位面积上的降水量, 实际上为某一特定区域或流域的平均降水状况,它有多种计算方法,如算术平均法、泰森多边形法、逐步订正格点法、三角法、等雨量线法等[4]。这里我们采用算术平均法计算面雨量:其计算公式如下:第 种预报方法在第 时段的面雨量 ,第 时段的实测面雨量结果见表3。由表3可以看出,无论哪个时段,方法I的面雨量都比方法II更接近实测值,由此可见,方法I的预报效果好于方法II。表3 实测及两种方法的面雨量面雨量方法I方法II实测情况时段时段时段时段五. 对问题2建模及求解1.模型I雨量按无雨、小雨、中雨、大雨、暴雨、特大暴雨定义为0~ 6 级,见表4 ;表4 雨量等级划分表雨量(mm)<>名称无雨小雨中雨大雨暴雨大暴雨特大暴雨雨级0123456在此基础上,我们可将预测雨量与实测雨量转化为相应的雨级,并计算出第 天,第 个时段,第 个观测站点的预测雨级的模糊评分为(2)同样我们也可得到方法I和II在第 时段的雨级模糊评分,结果见表5。表5 两种方法的预报模糊评分(雨级)方法时段第1时段第2时段第3时段第4时段方法方法从表5中我们也发现总体上方法I的预报能力优于方法II。2.模型II在评定两种方法的预报质量同时,我们需要考虑公众的感受,由于公众对雨量预报的感受都具有一定的模糊性,可以用{很满意,比较满意,基本满意,不满意}来代替。对此我们有两种方法:(1) 若预报雨级与实测雨级一致,观众很满意,评分为100;若预报雨级与实测雨级相差一级,观众比较满意,评分为80;若预报雨级与实测雨级相差两级,评分为60;若预报雨级与实测雨级相差两级以上,观众不满意,评分为0。(2) 采用模糊数学中的隶属函数来处理公众的感受。在隶属函数的选取上,在此这里选用偏大型中升岭形分布函数为隶属函数来处理公众的感受。升岭形函数公式为:其中 是预报雨级与实测雨级差的绝对值[5]。用上述两种方法都可以求出公众对第 天,第 个时段,第 个观测站点的预测雨级的满意度 ,在此我们选取了方法(2)。最后把模糊评分和公众满意度的权重分配分别确定为和,得到一个新的评价指标 为= +对第 时段关于41天、91个站点求和平均得到预报方法I和II在这个时段的评价指标 ,结果见表6。表6 两种方法的预报模糊评分(雨级)方法\时段第1段第2段第3段第4段方法方法由表6可见,考虑公众感受以后,总体上仍然是方法I优于方法II。你可以根据自己的水平加以改写
建模论文(或实验报告)的格式要求: ①写作顺序:标题、作者所在省份、城市、学校名称、班级、作者姓名、指导教师姓名、摘要及关键词、正文、参考文献。②参考文献的书写
定义在1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属
一般来说普通数学只能解决十分精确的问题,比如一个东西长度是多少,宽度是多少等等,多为客观的判断。模糊数学是利用给定的条件,来进行类似主观的判断,比如一个人是高还
模糊聚类是采用模糊数学方法,依据客观事物间的特征、亲疏程度和相似性,通过建立模糊相似关系对客观事物进行分类的一门多元技术。其算法主要有传递闭包法、动态直接聚类法
数学专业毕业论文选题方向如下: 1、并行组合数学模型方式研究及初步应用。 2、数学规划在非系统风险投资组合中的应用。 3、金融经济学中的组合数学问题。 4、竞赛