潘潘大小J
首先,天使粒子在学术上的称谓是“手性马约拉纳费米子”,不过,与一般的电子或者质子不同的是, 华裔科学家张首晟等实验组发现的“天使粒子”本质上不是一个真的粒子,而是一种在凝聚态物理中出现的“准粒子”。这有点像什么呢?如果说真的粒子是“股票”,那么准粒子有点像“股指期货”——那是一种抽象的金融衍生品。
那么,这次张首晟他们发现的手性马约拉纳费米子为什么取了一个名字叫“天使粒子”呢?这个我 给大家来分析解读一下,不一定对,毕竟我不是张首晟老师,他到底怎么想的我只能靠猜靠分析了:
首先,是因为这个手性马约拉纳费米子是很特殊的,从粒子物理的dirac方程可以看出来,一般的粒子都是既有正粒子又有反粒子,比如电子与正电子不是同一种粒子,而是两种粒子——这就好像我们的手掌,既有左手又有右手,左手不等于右手。但是,这次发现的手性马约拉纳费米子的特点是正粒子就是反粒子,也就是说,这个粒子就好像一种外星人,只有一只手——你说是左手还是右手?所以,按照西方人的思维习惯,一般用“天使与魔鬼”来比喻,那么现在是天使与魔鬼集成在同一个粒子身上了,因此被取名叫天使粒子。
其次,是因为2012年发现一个重要的基本粒子,那就是希格斯粒子,希格斯粒子被称为上帝粒子。现在,也许为了与上帝对应,突出其发现的重要性,所以取名“天使粒子”。
还有,张首晟是著名的天使投资人,丹华资本就是他主管的。天使这个词汇对他来说应该是最亲切的。
最后,有可能是因为物理学家马约拉纳本身就是一个折翼的天使——死得早,年轻的时候就失踪了,成为物理学的谜,这个粒子本来就叫做“手性马约拉纳费米子”嘛。
正负、阴阳、善恶……这个世界仿佛充满正反对立。英国物理学家保罗·狄拉克1928年预言,每一个基本粒子都有对应的反粒子。几年后,科学家在宇宙射线中发现了电子的反粒子正电子,验证了这一预言。1937年,意大利物理学家埃托雷·马约拉纳预言,自然界中可能存在一类特殊的粒子,它们的反粒子就是自身,这种正反同体的粒子被称为马约拉纳费米子。
不过,马约拉纳费米子存在的证据一直未被发现,它和中微子、希格斯—玻色子等一起,成为理论早有预言但长期无法验证的粒子。如今,张首晟团队终于找到了它存在的证据。
在寻找“天使粒子”的过程中,张首晟领导的理论团队预言了通过怎样的实验平台能够找到马约拉纳费米子,哪些实验信号能够作为证据;加利福尼亚大学洛杉矶分校的何庆林、王康隆以及欧文分校的夏晶领导的实验团队与理论团队密切合作,在实验中发现了被称为手性马约拉纳费米子的一类最基本马约拉纳费米子。中国的复旦大学和上海 科技 大学对实验也有贡献。
按照理论团队预言,研究人员搭建了一个将普通超导体薄膜置于量子反常霍尔效应薄膜(即磁性拓扑绝缘体)之上的混合器件。施加低强度外磁场后,研究人员测量到了半整数量子平台,这成为手性马约拉纳费米子存在的实验证据。
张首晟解释说,在以往的量子反常霍尔效应实验中,随着调节外磁场,会出现整数量子平台。这是通常的粒子行为。马约拉纳费米子没有反粒子,相当于半个传统粒子,因此当把普通超导体置于量子反常霍尔效应薄膜之上时,在通常的整数量子平台之外,会新出现半整数量子平台。
由4位华人科学家领衔的科研团队终于找到了正反同体的“天使粒子”——马约拉那费米子,从而结束了国际物理学界对这一神秘粒子长达80年的漫长追寻。
相关论文发表在今天出版的《科学》杂志上。该成果由加利福尼亚大学洛杉矶分校王康隆课题组和美国斯坦福大学教授张首晟课题组、上海 科技 大学寇煦丰课题组等多个团队共同完成,通讯作者为何庆林、寇煦丰、张首晟、王康隆,均为华人科学家。
今天,科学杂志发表了张首晟教授及其合作者的一篇论文。这个工作体现了理论与实验的很好结合。张老师是此项工作的理论负责人,实验团队根据张老师的理论方案,在二维反常量子霍尔效应绝缘体(即磁性拓扑绝缘体)与超导体的一维界面,发现导电性质表明电子的集体行为表现出马约拉纳费米子的行为。
归根到底,这是固体材料中的电子的行为。但是,大量电子在固体的环境(原子核阵列以及外部条件比如磁场所形成的复杂势能)以及它们自己之间的相互作用下,可以简洁地用所谓“准粒子”来描述,也就是说这里的大量电子的表现就像在最低能量的状态基础上,激发出大量“准粒子”。为了强调这些“准粒子”是在新的层次上演生出来,而它们在其所在的环境中就类似我们的宇宙中的基本粒子,我们还可以称它们为“演生粒子”。
现在,张老师及其合作者在某个特定固体环境中,找到了类似马约拉拉纳费米子的演生粒子。所谓“找到”,是说导电行为必须要用马约拉纳费米子来解释。他们发现的马约拉纳费米子是在二维磁性拓扑绝缘体与超导体的一维边界,这导致它是手征性的,也就是说沿着一个方向跑。
费米子是这样一种量子粒子。在同一个系统中,同种费米子的状态(考虑所有的的指标)必须各不相同。电子(不管是在自由空间中还是在固体材料中)就是费米子。马约拉纳费米子是这样一种特殊的费米子,即它的反粒子是它自己。 反粒子可以如下定义:产生一个反粒子,相当于消灭一个与之很多性质(动量、角动量、电荷等等)相反的粒子。反之亦然,正反粒子是相对的。宇宙自由空间中还没有发现马约拉纳费米子,中微子有可能是,也有可能不是,答案还不知道。
张老师将马约拉纳费米子称为天使粒子,因为他注意到小说《天使和魔鬼》中,正反粒子湮灭,世界消失,而马约拉纳费米子可以比喻为,这里只有天使,没有魔鬼。
根据粒子物理的定义,物质由费米子和玻色子两种基本粒子组成,费米子是构成物质的原材料(如轻子中的电子、组成质子和中子的夸克、中微子);玻色子是传递作用力的粒子(光子、介子、胶子、W和Z玻色子)。
位列神秘粒子名单的Majorana费米子是费米子的一种,其独特之处在于, 它是一个没有反粒子,或者说反粒子就是其自身的粒子。
手性Majorana费米子的发现为持续了整整80年对这一神秘粒子的搜索画上了圆满的句号。类比Dan Brown描述正反粒子湮灭爆炸的小说《天使与魔鬼》,张首晟提出这一新发现的手性Majorana费米子应该称为天使粒子:我们发现了一个完美的世界,那里只有天使,没有魔鬼。
意义在于:
Majorana费米子被发现,将从哲学层面对挑战人类对现有世界的认知,即世界不完全是正反对立的,有阴不一定有阳,有天使不一定有魔鬼。除此之外,这一发现还具有更加现实的意义——在固体中实现拓扑量子计算将成为可能。
在张首晟看来,天使粒子的发现 “非常非常神奇,这意味着一个量子比特可以拆成两个,对整个量子物理有根本的改变。”
等了80年 天使粒子现身
1928年,英国物理学家保罗·狄拉克预言,每一个基本粒子都有对应的反粒子。几年后,科学家在宇宙射线中发现了电子的反粒子正电子,验证了这一预言。
1937年,意大利物理学家埃托雷·马约拉纳预言,自然界中可能存在一类特殊的粒子,它们的反粒子就是自身,这种正反同体的粒子被称为马约拉纳费米子。
正负、阴阳、善恶……这个世界仿佛充满正反对立。
不过,马约拉纳费米子存在的证据一直未被发现,它和中微子、希格斯—玻色子等一起,成为理论早有预言但长期无法验证的粒子。如今,华人科学家领衔的科研团队终于找到了它存在的证据。
神秘的正反同体粒子
在以往的量子反常霍尔效应实验中,随着调节外磁场,会出现整数量子平台。这是通常的粒子行为。马约拉纳费米子没有反粒子,相当于半个传统粒子,因此当把普通超导体置于量子反常霍尔效应薄膜之上时,在通常的整数量子平台之外,会新出现半整数量子平台。
为此,研究人员搭建了一个将普通超导体薄膜置于量子反常霍尔效应薄膜(即磁性拓扑绝缘体)之上的混合器件。施加低强度外磁场后,研究人员测量到了半整数量子平台,这成为手性马约拉纳费米子存在的实验证据。
根据爱因斯坦的质能转换公式,当一个粒子遇上其反粒子就会发生湮灭,并释放能量。所以,科研团队把他们发现的马约拉纳费米子称为“天使粒子”。
在寻找“天使粒子”的过程中,华裔科学家的理论团队预言了通过怎样的实验平台能够找到马约拉纳费米子,哪些实验信号能够作为证据;实验团队与理论团队密切合作,最终发现了手性马约拉那费米子,为持续了整整80年的科学 探索 画上了圆满的句号。对此,中国的复旦大学和上海 科技 大学对实验也有贡献。
带来的量子计算时代,让人期待
发现马约拉纳费米子存在,对于建造稳定的量子计算机具有什么现实意义呢?
目前看来,最大的用途之一,就是未来能帮助中国建造更稳定领先世界的量子计算机!量子计算机是一种具有超快的并行计算和模拟能力的计算机。它的运算能力将提升数万倍。
普通计算机只能按照时间顺序一个个地解决问题,而量子计算机却可以同时解决多个问题。这种超快速度可能彻底改变所有行业。例如精准到秒的天气预报,可预见的交通路况,新型药剂成分的构造 探索 ,外太空 探索 ,人工智能与自动化等一切目前计算机需要通过穷举法逐一 探索 的事业,都可能在一瞬间完成。
张首晟一直提到:人类文明的价值是大道至简,他认为把大道用简单的话讲出来,让人人都听懂,这才是真正牛的。
他最喜欢讲的故事是关于狄拉克的:
4的根号等于几?很简单,2和-2,英国理论物理学家、量子力学的奠基者之一狄拉克初中时,就觉得这个回答非常非常奇妙,为什么开根号的时候总是有一个正根,有一个负根?
狄拉克突然从开根号开始天马行空,做了个惊人的预言,断定宇宙中所有的基本粒子,都有个反粒子,有电子就有反电子,有质子就有反质子,有中子就有反中子,这是个非常非常神奇的预言。
1932年.安德森实验发现了正电子。
1956年美国物理学家张伯伦在劳伦斯-伯克利国家实验室发现了反质子,他用玻璃管中的被粒子加速器加速过的高能粒子对相撞,发现在突然间成对出现了几道轨迹,又在短时间内相撞而互相湮灭,这是人们第一次直接观测到反粒子。
迄今,已经发现了几乎所有相对于强作用来说是比较稳定的粒子的反粒子。 如果反粒子按照通常粒子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。
这样,狄拉克的天才预言被实验证实了,那么,有没有反例呢?宇宙中会不会存在一类没有反粒子的粒子,或者说正反同体的粒子?
意大利理论物理学家埃托雷·马约拉那(Ettore Majorana)在1937年,从理论上提出了这样的粒子存在,即我们今天所称的马约拉那费米子,它的反粒子就是它本身。但是不幸而且巧合的是,他在提出这种神奇粒子存在不久后,到巴勒莫乘船旅行中神秘失踪,从此渺无音信。
从那时开始,这一神奇粒子成为了物理学家们无时不想追寻的梦中情人,困扰了物理学界整整80年。
张首晟把突破口转向凝聚态物理。2017年7月,张首晟及其团队在《科学》杂志上发表了一项新发现,在超导-量子反常霍尔平台中发现了具有半个量子电导的边缘电流,与理论预言的手性马约拉纳粒子十分吻合。这是在霍尔效应平台系统中第一个具有确凿证据的马约拉纳测量结果。
张首晟将这一新发现的手性马约拉那费米子命名为“天使粒子”,这个名字来源于丹·布朗的小说及其电影《天使与魔鬼》。“这部作品描述了正反粒子湮灭爆炸的场景。过去我们认为有粒子必有其反粒子,正如有天使必有魔鬼。但今天,我们找到了一个没有反粒子的粒子,一个只有天使,没有魔鬼的完美世界”张首晟说。
这也使得张首晟再度成为2017年诺贝尔物理学奖的热门人选,虽然最终再度落选。
当然也存在一些质疑,比如中山大学天文与空间科学研究院院长李淼对此评价说:“这个发现不是基本粒子,而是在极低温条件之下以及二维材料的边界上造成的某种量子态,这个态满足中性粒子的要求,即其反态就是自身。鉴于这种量子态需要极端条件,距离应用还比较远,如果我用一句大白话来解释,就是“凝聚态物理还没有攻陷粒子物理”。“
简单地说,马约拉纳准粒子的证实必须找到更令人信服的证据,马约拉那费米子还只能继续是物理学家们的情人,梦中的。
12月1,美籍华人张首晟在美国的9层高楼一跃而下,匆匆结束了短暂的一生,终年55岁。
张首晟是杨振宁的得意门生,中国科学院外籍院士,物理学家,天使粒子的发现人。获得欧洲物理奖,巴克莱奖,狄拉克奖,尤里基础物理学奖等,被杨振宁认为是下个诺贝尔奖获得者。
让杨振宁想不到的是他竟然白发人送黑发人。
1937年由马约拉纳提出,是一种费米子,它的反粒子与它自身完全等价,当它们相遇时,会互相湮灭,释放大量能量。拿约拉纳对狄拉克方程进行了改写,得出了马约拉纳方程。但从未有物理学家发现过“马约拉纳费米子”的存在。
直到过去了80年后,张首晟和他的团队在拓扑绝缘体和超导体组成的系统中发现了手性马约拉纳费米子,它符合马约拉纳费米方程的波动方程,第一次有力的证实了马约拉纳费米子(天使粒子)的存在。这个消息发表在《科学》杂志上。
欢迎关注和点评。
我不是专门学物理的,只是把我看到的一些关于“天使粒子”的信息分享一下。
这段话里面提到的“反粒子”,是由物理学家迪拉克提出的,他预言,每一种基本粒子都会有自己的反粒子,而且这种反粒子跟“正粒子”是两种完全不一样的粒子——就好像是一对水火不容的兄弟一样。举个简单的例子,数轴上的每一个正数都对应了一个负数,虽然这两个数之间有千丝万缕的联系,但是完全是两个数;而这种预言中的天使粒子是一个例外,他是数轴上的0,他的负数就是自己。
这个说法只是张首晟本人一个浪漫的说法而已。
所以只要他愿意,他也可以说这个粒子应该叫魔鬼粒子。
目前发现的不是预言中的基本粒子,而是一堆电子形成的“准粒子”。他们的行为跟预言中的天使粒子有相似之处。
举个例子,好比一块大石头拦住了道路,一个人预言,一定会有可以搬动这块石头的人。几十年过去了,一对人非常兴奋的表示,我们发现了一种可以让二十个人一起搬动这块石头的方法。所以那个预言中的大力士依然没有找到,但是这二十个人达到了跟那个大力士一样的效果,并且最终搬开了石头,解决了一个大难题。
所以这篇论文的第一作者不是张首晟,当然,这只是论文作者排序的问题,他对该研究的贡献依然是非常巨大的。
而且我们应该注意到,这篇论文的共同第一作者分别是加州大学洛杉矶分校(UCLA)的 何庆林和 潘磊, 从名字上也可以看出来,都是中国人。
此外,上海 科技 大学也参与了试验研究,甚至比何庆林/潘磊团队更早的,上海交通大学的贾金锋团队就发表了关于发现手性马约拉纳费米子的报告,但是相比前者:
贾教授团队的工作是马约拉纳费米子的零维版,主要通过扫描显微镜测试;我们研究的是马约拉纳费米子的一维版,主要是做成电子器件来进行宏观电磁测试。
所以即便上海 科技 大学和上海交通大学的团队没有取得那么多的关注,他们对“天使粒子”研究的贡献也是不可忽略的。
天使粒子并不是正式的叫法,只是发现者将其这样命名,在此之前,该粒子称为马约拉纳费米子。从这个名字可以看出,马约拉纳费米子有两个部分构成,一个是马约拉纳,一个是费米子。马约拉纳是意大利的理论物理学家,可谓是英年早逝,1906年生,1938年就没了,但他提出了马约拉纳方程,改写了大物理学家狄拉克的方程。后一个是费米子,作为量子粒子中的一个大类,费米子被认为是拥有与自身不同的反粒子,而另一个大类为玻色子,该粒子拥有自身的反粒子。于是,马约拉纳预测,自然界中还有一种特殊的费米子,拥有自身的反粒子,这个粒子就被称为马约拉纳费米子。
马约拉纳费米子仅仅是预言存在,在自然界中的地位显然要低于“希格斯玻色子”,因为希格斯玻色子的任务是将质量赋予了费米子,而自身则是一种玻色子。从中可以看出,马约拉纳费米子的发现算是验证了马约拉纳的猜想。如果从科学史的角度看,将这个粒子称之为马约拉纳费米子更准确一些,因为这是他预言存在的,这就像有人告诉你这个玩意存在,只是受限于当时的观测技术。如果要将马约拉纳费米子命名为天使粒子,其实还得去问问马约拉纳愿不愿意,因为希格斯玻色子的预言者希格斯不太喜欢上帝粒子这个称呼,从这个角度看,预言者的权重更大一些,在半个世纪前就能通过理论方程进行预言,令人敬佩。
王者堕落天使
既然他能够去证明黎曼猜想,就说明他在这上面投入了很多的研究经历。所以也说明他是一个专业能力很强悍的人,也是一个在专业领域有更高发展的人。而且是一个非常专业的数学家,也说明他的未来发展前途很好,而且能够通过黎曼猜想来为自己提供更高的知名度,能够让更多的人关注自己,能够关注数学。
相信自己我能
汉语言文学方面的题目喜爱选取上要注意选题的选择与要求,然后对于自己熟知的汉语言文学领域进行开展,并且论文的上的研究是自己所干兴趣的方面,当然此类论文的内容一定要确保真实等。可以参考往期的论文标题来制定自己的标题都是不错的,你不妨来:中国月期刊咨询网,看看相关的信息。
椒盐儿橙子
合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。
选题的重要性
1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。
2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。
3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。
4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。
选题时的注意事项
1、查阅文献看别人怎么做。
2、资料是否充足。
3、在选择较具争议性的研究题目之前需慎重考虑。
4、调查您的研究题目研究是否未被研究过。
5、要充分考量自身的能力问题。
6、选择您喜爱的研究题目。
7、时间条件和导师指导条件也是选题时需要考虑的因素。
我们也可以找到这样的参考文献,简单列举如下: 1 企业内部控制与企业档案管理的相关性分析——基于《企业内部控制基本规范》的档案话题 期刊:《档案学研究》 时间:
太阳,给人们带来光明,带来希望。在人类社会早期,世界上很多民族都有关于太阳的神话,而且早期太阳神神话中,太阳都与鸟有密切的关系。 在希腊神话中,太阳神阿波罗在人
企业的战略是着眼于长远、适应公司内外形势而作的指导性发展规则,它指明了在竞争环境中公司的生存态势、经营方针和发展方向,进而决定了其重要的工作内容和竞争方式,所以
是可以的,题目定好之后,如果在撰写过程中出现问题,写不下去,可以联系指导老师,进行改题。或者有时指导老师也会建议你改题目。
毕业论文题目推荐如下: 一、企业管理论文最新题目: 1、管理改进措施对肯尼亚公共服务绩效的影响研究。 2、在马达加斯加的中国企业社会责任研究。 3、投资者情绪对