曾涛~家居建材
二值图像 顾名思义 图像中只有两种颜色的信息 通常是黑色和白色 是将普通图像二值化后得到的图像 图像二值化的作用是为了方便提取图像中的信息 二值图像在进行计算机识别时可以增加识别效率比如 需要计算水面悬浮物的数量 就可以将一定面积的水拍成图片后二值化:黑色为水 白色为悬浮物然后通过计算机进行图像扫描 如果是黑色 0 就继续扫描如果是白色 1就改变变量 通过连续算法 得出一个悬浮物如果是彩色的 计算机要计算很久 而二值化的图像则更快得多
狐狸猫fiesta
图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。本文针对几种经典而常用的二值发放进行了简单的讨论并给出了其 实现。1、P-Tile法Doyle于1962年提出的P-Tile (即P分位数法)可以说是最古老的一种阈值选取方法。该方法根据先验概率来设定阈值,使得二值化后的目标或背景像素比例等于先验概率,该方法简单高效,但是对于先验概率难于估计的图像却无能为力。2、OTSU 算法(大津法)OSTU算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。1978 OTSU年提出的最大类间方差法以其计算简单、稳定有效,一直广为使用。3、迭代法(最佳阀值法)(1). 求出图象的最大灰度值和最小灰度值,分别记为Zl和Zk,令初始阈值为:(2). 根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值Z0和ZB:式中,Z(i,j)是图像上(i,j)点的象素值,N(i,j)是(i,j)点的权值,一般取1。(3). 若TK=TK+1,则所得即为阈值,否则转2,迭代计算。4、一维最大熵阈值法它的思想是统计图像中每一个灰度级出现的概率 ,计算该灰度级的熵 ,假设以灰度级T分割图像,图像中低于T灰度级的像素点构成目标物体(O),高于灰度级T的像素点构成背景(B),那么各个灰度级在本区的分布概率为:O区: i=1,2……,tB区: i=t+1,t+2……L-1上式中的 ,这样对于数字图像中的目标和背景区域的熵分别为:对图像中的每一个灰度级分别求取W=H0 +HB,选取使W最大的灰度级作为分割图像的阈值,这就是一维最大熵阈值图像分割法。
小特别16
二值图像的作用:图像二值化的作用是为了方便提取图像中的信息,二值图像在进行计算机识别时可以增加识别效率。比如:需要计算水面悬浮物的数量,就可以将一定面积的水拍成图片后二值化。二值图像是指每个 像素不是黑就是白,其灰度值没有中间过渡的图像。二值图像一般用来描述文字或者图形,其优点是占用空间少,缺点是当表示人物、风景的图像时,二值图像只能描述其轮廓,不能描述细节。这时候要用更高的灰度级。二值图像是每个像素只有两个可能值的数字图像。人们经常用单色图像表示二值图像,但是也可以用来表示每个像素只有一个采样值的任何图像,例如灰度图像等。二值图像中所有的像素只能从0和1这两个值中取,因此在MATLAB中,二值图像用一个由0和1组成的二维矩阵表示。这两个可取的值分别对应于关闭和打开,关闭表征该像素处于背景,而打开表征该像素处于前景。以这种方式来操作图像可以更容易识别出图像的结构特征。二值图像操作只返回与二值图像的形式或结构有关的信息,如果希望对其他类型的图像进行同样的操作,则首先要将其转换为二进制的图像格式,可以通过调用MATLAB提供的 im2bw()来实现。二值图像经常出现在数字图像处理中作为图像掩码或者在 图像分割、 二值化和dithering的结果中出现。一些输入输出设备,如激光打印机、传真机、单色计算机显示器等都可以处理二值图像。
天天快乐1414
问题: 我在提取图像边缘的时候,首先对图像进行灰度变换,之后进行二值处理,最后进行边缘检测得到边缘图像。 但是在查阅资料的过程中我经常发现很多人忽略二值化的步骤,直接进行边缘检测;还有很多人在实现某些功能的时候先进行边缘检测之后再阈值分割,让我感到非常迷惑,这篇文章旨在探求二者的关系。
首先要知道图像二值化和边缘检测的目的。
图像的阈值处理一般使得图像的像素值更单一、图像更简单。阈值可以分为全局阈值和局部阈值,可以是单阈值也可以是多阈值。 图像二值化是设置单阈值,为了将图像中感兴趣的像素分离出来作为前景像素,不感兴趣的部分作为背景像素。
最简单的二值化操作是使用以下函数:(这是全局化的阈值)
上述的二值化处理是设置一个全局阈值,让所有像素值与该阈值比较,下面还可以通过自适应阈值实现图像的二值化处理。 自适应阈值不需要确定一个固定的阈值,根据其对应的自适应方法,通过图像的局部特征自适应的设定阈值,做出二值化处理。 自适应阈值是一种局部阈值,要在图像中确定一个区域,求出该区域内的像素平均值,再与阈值比较
adaptiveMethod - 指定计算阈值的方法。 :阈值取相邻区域的平均值 :阈值取相邻区域的加权和,权重为一个高斯窗口。
thresholdType - 和上面一样 blockSize - 邻域大小(用来计算阈值的区域大小),计算图像的像素区域一般取3×3、5×5、7×7..... C - 常数,阈值等于平均值或者加权平均值减去这个常数。该参数用于微调阈值,可以为负数
还有一种非常多人提及的方法——Otsu’s 二值化,这种方法下次再记录。
要对图像进行边缘检测,首先对图像进行灰度变换,使图像只包含一个通道的信息,然后比较各相邻像素间的亮度差别,亮度产生突变的地方就是边缘像素,将这些边缘像素点连接到一起就形成了边缘图像。 那么首先要知道如何检测出边缘: 边缘有方向和幅值两个要素,通常对图像相邻域像素求取梯度来描述和检测边缘。 为何要求梯度? 图像梯度是对多个方向分别求偏导得到的导数组。比如下图是亮度在x方向上变化,在y方向上没有变化,所以此时只需对x求偏导,该处关于y的偏导为0。
同样图像的亮度在y轴变化时,x方向的偏导为0。
我们知道,当一个函数在某处变化大的时候,它的导数在该处得到极值。
可以看到,图像由亮变暗时函数陡然下降,导数得到极小值,由暗变亮时函数又陡然上升,导数得到极大值,接下来只要找到导数的峰值就行。
这里主要了解Canny边缘检测算法。 Canny算子首先对图像进行平滑滤波,滤除图像的噪声以减少噪声对图像边缘检测的干扰。 下面这两篇文章对Canny算子的介绍非常清晰,在此附上链接以供学习。 在进行边缘检测之前至少要将图像灰度化,因为梯度运算并不能反映色彩的变化差异,所以转换成只有一种颜色通道的灰度图像能够更好地进行边缘检测。
深入了解过图像二值化和边缘检测之后,我认为既可以直接使用灰度图像进行边缘检测,也可以二值化之后再进行边缘检测,二值化的目的是进一步简化灰度图像,使图像中的信息更加纯粹,边缘亮度变化更加明显。如果阈值选的较好还可以滤除不需要的弱边缘,使边缘处理后的图像轮廓更加清晰。
还有一种方法是先进行边缘检测,再二值化,这种情况一般适用于: 想得到二值化图像,但由于原图出现光照不均、前景和背景灰度差别很小等情况,我们不能直接得到完整的目标,这时就可以利用边缘检测对光线变化的不敏感性,先对图像作边缘检测,检测出我们想要进一步研究的目标轮廓,然后再根据只有边缘的图像,求出原图像所有边缘点的像素平均值,将该值作为阈值对原图像进行二值处理,就能很好得获得目标区域,并且目标区域的连通性也很好。
笔者刚刚开始学习图像处理与计算机视觉,可能会出现许多错误,欢迎各位提出改进意见!
本文研究了无人机(UAV)遥感图像拼接过程中重叠区域的不匹配问题。为了解决这个问题,首先通过将双重匹配与随机抽样共识(RANSAC)方法相结合来过滤特征点。其次
【摘要】 加强国有资产管理,防止国有资产流失,促进国有资产保值增值,既是国有企业及机构的必要任务,也是保障社会安定团结的基础。此外,为了促进现代化企业制度推行,
这是化学反应速率和化学平的最后一个小知识点,专题很多是对知识点内容的分析和总结,在考试中也很经常遇到,需要同学们记住的点也很多,同学们可以结合之前的知识点一同记
SDNET: MULTI-BRANCH FOR SINGLE IMAGE DERAINING USING SWIN 最近,流行的transformer
图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图